Skip to main content
Log in

Current Sheet as an Optimal Synchrotron Maser on a Radio Pulsar

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Using a relativistic plasma with an isotropic monoenergetic distribution of electrons and positrons as an example, we show that in the maser regime the maximum possible amplification of synchrotron radiation at a distance of one wavelength is achieved in a medium where the magnetic energy density is of the order of the particle energy density. This ratio of the energy densities corresponds to a (Harris-type) current sheet. We have obtained an electron Lorentz factor of 350 and a magnetic field strength of 10 kG in the maser radio emission region for the Crab pulsar. Our estimate suggests that the optical and coherent radio emissions of the object originate from one synchrotron source in the form of a current sheet. The diameter of the source must exceed the light-cylinder radius approximately by a factor of 6 for the maser wave field to interact with particles in the linear regime, in particular, to keep its phase velocity higher than the speed of light in a vacuum—a necessary condition for the synchrotron instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. In the case of synchrotron absorption of a photon \(\hbar\omega\), the relativistic electrons from the energy interval \(\textrm{d}E\ll\hbar\omega\) pass into a larger volume of momenta \(4\pi(E+\hbar\omega)^{2}\textrm{d}E/c^{3}\) than in the case of induced emission with a reduction in the occupied volume to \(4\pi(E-\hbar\omega)^{2}\textrm{d}E/c^{3}\). These volumes are proportional to the number of quantum states in which an electron ends up in the corresponding radiation process. The maser regime requires that the decrease in the probability of spontaneous emission with increasing particle energy be faster than the increase in the number of quantum states of the electron per unit interval of its energy.

  2. The values of \(R_{\perp}\), \(k_{\perp}\), and \(\Delta\Phi\) are the same in the laboratory frame and the frame moving with the longitudinal velocity of the electron.

  3. In the optical range a relativistically strong laser field was achieved in experiments in the late 1990s on the amplification of linearly-frequency-modulated laser pulses, where the flux density of the focused radiation exceeded \(10^{18}\textrm{ W}\textrm{cm}^{-2}\); see the reviews by Di Piazza et al. (2012) and Danson et al. (2019) and the description of the experiment by Ginzburg et al. (2010).

REFERENCES

  1. U. Arp, G. T. Fraser, A. R. Hight Walker, T. B. Lucatorto, K. K. Lehmann, K. Harkay, N. Sereno, and K.-J. Kim, Phys. Rev. Spec. Top. Accel. Beams 4, 054401 (2001).

  2. C.-I. Björnsson, A. Sandberg, and J. Sollerman, Astron. Astrophys. 516, A65 (2010).

    Article  Google Scholar 

  3. R. Bühler and R. Blandford, Rep. Prog. Phys. 77, 066901 (2014).

  4. B. Cerutti, J. Mortier, and A. A. Philippov, Mon. Not. R. Astron. Soc. Lett. 463, L89 (2016a).

    Article  ADS  Google Scholar 

  5. B. Cerutti, A. A. Philippov, and A. Spitkovsky, Mon. Not. R. Astron. Soc. 457, 2401 (2016b).

    Article  ADS  Google Scholar 

  6. A. Crusius and R. Schlickeiser, Astron. Astrophys. 195, L9 (1988).

    ADS  Google Scholar 

  7. C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, et al., High Power Laser Sci. Eng. 7, e54 (2019).

  8. J. A. Eilek and T. H. Hankins, J. Plasma Phys. 82, 635820302 (2016).

  9. V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, V. V. Lozhkarev, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, et al., AIP Conf. Proc. 1228, 71 (2010).

    Article  ADS  Google Scholar 

  10. A. Golden, A. Shearer, R. M. Redfern, G. M. Beskin, S. I. Neizvestny, V. V. Neustroev, V. L. Plokhotnichenko, and M. Cullum, Astron. Astrophys. 363, 617 (2000).

    ADS  Google Scholar 

  11. D. Khangulyan, M. V. Barkov, and S. B. Popov, Astrophys. J. 927, 2 (2022).

    Article  ADS  Google Scholar 

  12. V. V. Kocharovskii, Vl. V. Kocharovskii, V. Yu. Martyanov, and S. V. Tarasov, Phys. Usp. 59, 1165 (2016).

    ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2003; Butterworth-Heinemann, Oxford, 1975).

  14. Y. Lyubarsky, Astrophys. J. 652, 1297 (2006).

    Article  ADS  Google Scholar 

  15. R. McCray, Science (Washington, DC, U. S.) 154, 1320 (1966).

    Article  ADS  Google Scholar 

  16. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  17. A. Sagiv and E. Waxman, Astrophys. J. 574, 861 (2002).

    Article  ADS  Google Scholar 

  18. I. S. Shklovsky, Astrophys. J. Lett. 159, L77 (1970).

    Article  ADS  Google Scholar 

  19. V. Soglasnov, in Proceedings of the 363 WE-Heraeus Seminar on Neutron Stars and Pulsars on 40 Years after the Discovery (2007), p. 68.

  20. J. Sollerman, J. Selsing, P. M. Vreeswijk, P. Lundqvist, and A. Nyholm, Astron. Astrophys. 629, A140 (2019).

    Article  ADS  Google Scholar 

  21. M. Spada, M. Salvati, and F. Pacini, Astrophys. J. 511, 136 (1999).

    Article  ADS  Google Scholar 

  22. M. Timirkeeva and I. Malov, Astrophys. Space Sci. 365, 190 (2020).

    Article  ADS  Google Scholar 

  23. K. C. Westfold, Astrophys. J. 130, 241 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. P. Wild, S. F. Smerd, and A. A. Weiss, Ann. Rev. Astron. Astrophys. 1, 291 (1963).

    Article  ADS  Google Scholar 

  25. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  26. V. V. Zheleznyakov, Sov. Phys. JETP 24, 381 (1967).

    ADS  Google Scholar 

  27. V. V. Zheleznyakov, G. Thejappa, S. A. Koryagin, and R. G. Stone, in Radio Astronomy at Long Wavelengths, Proceedings of the AGU Chapman Conference, Vol. 119 of Geophysical Monograph Series (Am. Geophys. Union, Washington, 2000), p. 57.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00104a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koryagin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryagin, S.A. Current Sheet as an Optimal Synchrotron Maser on a Radio Pulsar. Astron. Lett. 49, 811–817 (2023). https://doi.org/10.1134/S1063773723120046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723120046

Keywords:

Navigation