Skip to main content
Log in

TPE-diphenylamine derivatives as solution-processable hole injectors with better charge balance for organic light-emitting diodes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Charge injection and transport layers with optimum carrier transport properties are essential for stable and efficient organic light-emitting diode (OLED) devices. Herein, we report two tetraphenylethylene-diphenylamine derivatives, TPOMe and TPOSt having four and two methoxy substituents, respectively, and explore their potential as solution-processable hole injection layers (HILs) for OLEDs. Standard, Alq3-based green OLEDs with a simple device design were used to demonstrate the properties of the synthesized HILs, in comparison with a commercially available standard HIL, m-MTDATA. TPOMe-based device exhibited a current efficiency of 4.2 cd A−1, while TPOSt-based device showed 3.81 cd A−1 at 10 mA cm−2. Both the above devices showed better performance compared to a control device fabricated with the standard HIL, m-MTDATA, which showed a relatively lower current efficiency value (1.70 cd A−1 at 10 mA cm−2). Similarly, the maximum external quantum efficiency (EQE) of TPOMe (1.77%) and TPOSt (1.55%) were higher than that of the m-MTDATA-based device (1.40%). Although m-MTDATA device has better luminance and hole mobility compared to TPOMe and TPOSt devices, the optimum charge balance in the latter devices leads to better current efficiency and EQE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Thejo Kalyani N and Dhoble S J 2012 Renew. Sust. Energ. Rev. 16 2696

    Article  CAS  Google Scholar 

  2. Shahnawaz, Swayamprabha S S, Nagar M R, Yadav R A K, Gull S, Dubey D K et al 2019 J. Mater. Chem. C 7 7144

  3. Wang Z, Lou Y, Naka S and Okada H 2011 ACS Appl. Mater. Interfaces 3 2496

    Article  CAS  PubMed  Google Scholar 

  4. Huang T, Jiang W and Duan L 2018 J. Mater. Chem. C 6 5577

    Article  CAS  Google Scholar 

  5. Shibata M, Sakai Y and Yokoyama D 2015 J. Mater. Chem. C 3 11178

    Article  CAS  Google Scholar 

  6. Tang Y, Zhuang J, Xie L, Chen X, Zhang D, Hao J et al 2016 Eur. J. Org. Chem. 2016 3737

    Article  CAS  Google Scholar 

  7. Shih H K, Chu Y L, Chang F C, Zhu C Y and Kuo S W 2015 Polym. Chem. 6 6227

    Article  CAS  Google Scholar 

  8. Yang Z, Cheng C, Pan X, Pan F, Wang F, Tian M et al 2020 Mater. Chem. Phys. 239 121828

    Article  CAS  Google Scholar 

  9. Krucaite G, Blazevicius D, Tavgeniene D, Grigalevicius S, Lin C H, Shao C M et al 2020 Opt. Mater. 108 110225

    Article  CAS  Google Scholar 

  10. Shan M, Jiang H, Guan Y, Sun D, Wang Y, Hua J et al 2017 RSC Adv. 7 13584

    Article  CAS  Google Scholar 

  11. Xiao H, Rungo B A, Wang S, Li X and Liu H 2020 Org. Electron. 85 105868

    Article  CAS  Google Scholar 

  12. Zhang X, Wu Z, Wang D, Wang D and Hou X 2009 Appl. Surf. Sci. 255 7970

    Article  CAS  Google Scholar 

  13. Chavhan S D, Ou T H, Jiang M R, Wang C W and Jou J H 2018 J. Phys. Chem. C 122 18836

    Article  CAS  Google Scholar 

  14. Chen W S, Yang S H, Tseng W C, Chen W W S and Lu Y C 2021 ACS Omega 6 13447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaramillo-Quintero O A, Sanchez R S, Rincon M and Mora-Sero I 2015 J. Phys. Chem. Lett. 6 1883

    Article  CAS  PubMed  Google Scholar 

  16. Lin H W, Lin W C, Chang J H and Wu C I 2013 Org. Electron. 14 1204

    Article  CAS  Google Scholar 

  17. Zhong Z, Ma Y, Liu H, Peng F, Ying L, Wang S et al 2020 ACS Appl. Mater. Interfaces 12 20750

    Article  CAS  PubMed  Google Scholar 

  18. Fong H H, Papadimitratos A, Hwang J, Kahn A and Malliaras G G 2009 Adv. Funct. Mater. 19 304

    Article  CAS  Google Scholar 

  19. Jiang Z, Ye T, Yang C, Yang D, Zhu M, Zhong C et al 2011 Chem. Mater. 23 771

    Article  CAS  Google Scholar 

  20. Muniyasamy H, Muthusamy K, Chinnamadhaiyan M, Sepperumal M, Ayyanar S and Selvaraj M 2022 Energy Fuels 36 3909

    Article  CAS  Google Scholar 

  21. Zhang X, Liu X, Ghadari R, Li M, Za Zhou, Ding Y et al 2021 ACS Appl. Mater. Interfaces 13 12322

    Article  CAS  Google Scholar 

  22. Zhang X, Za Zhou, Ma S, Wu G, Liu X, Mateen M et al 2020 Chem. Commun. 56 3159

    Article  CAS  Google Scholar 

  23. Ke W, Priyanka P, Vegiraju S, Stoumpos C C, Spanopoulos I, Soe C M M et al 2018 J. Am. Chem. Soc. 140 388

    Article  CAS  PubMed  Google Scholar 

  24. Jou J H, Kumar S, Singh M, Chen Y H, Chen C C and Lee M T 2015 Molecules 20 13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen Q P B, Baek S J, Kim M J, Shin N Y, Kim G W, Choe D C et al 2014 Molecules 19 14247

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benor A, Takizawa S-Y, Pérez-Bolivar C and Anzenbacher P Jr 2010 Appl. Phys. Lett. 96 243310

    Article  Google Scholar 

  27. Yu S Y, Huang D C, Chen Y L, Wu K Y and Tao Y T 2012 Langmuir 28 424

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Koo H, Kwon O, Jae Park Y, Choi H, Lee K et al 2017 Sci. Rep. 7 11995

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee W H, Kim D H, Justin Jesuraj P, Hafeez H, Lee J C, Choi D K et al 2018 Mater. Res. Express 5 076201

    Article  Google Scholar 

  30. Chopra N, Lee J, Zheng Y, Eom S H, Xue J and So F 2009 ACS Appl. Mater. Interfaces 1 1169

    Article  CAS  PubMed  Google Scholar 

  31. Abraham S, Mangalath S, Sasikumar D and Joseph J 2017 Chem. Mater. 29 9877

    Article  CAS  Google Scholar 

  32. Forrest S R, Bradley D D C and Thompson M E 2003 Adv. Mater. 15 1043

    Article  CAS  Google Scholar 

  33. Okamoto S, Tanaka K, Izumi Y, Adachi H, Yamaji T and Suzuki T 2001 Jpn. J. Appl. Phys. 40 L783

    Article  CAS  Google Scholar 

  34. Tanaka I and Tokito S 2004 Jpn. J. Appl. Phys. 43 7733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Council of Scientific and Industrial Research (MLP 0049 & DST-Nanomission-GAP 162939) is gratefully acknowledged. SB and VD gratefully acknowledge CSIR, Government of India, for their research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshy Joseph.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 531 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, S., Prabhu, P.V., Vipin, C.K. et al. TPE-diphenylamine derivatives as solution-processable hole injectors with better charge balance for organic light-emitting diodes. Bull Mater Sci 47, 58 (2024). https://doi.org/10.1007/s12034-023-03119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03119-7

Keywords

Navigation