Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-reciprocal topological solitons in active metamaterials

Abstract

From protein motifs1 to black holes2, topological solitons are pervasive nonlinear excitations that are robust and can be driven by external fields3. So far, existing driving mechanisms all accelerate solitons and antisolitons in opposite directions3,4. Here we introduce a local driving mechanism for solitons that accelerates both solitons and antisolitons in the same direction instead: non-reciprocal driving. To realize this mechanism, we construct an active mechanical metamaterial consisting of non-reciprocally coupled oscillators5,6,7,8 subject to a bistable potential9,10,11,12,13,14. We find that such nonlinearity coaxes non-reciprocal excitations—so-called non-Hermitian skin waves5,6,7,8,15,16,17,18,19,20,21,22, which are typically unstable—into robust one-way (anti)solitons. We harness such non-reciprocal topological solitons by constructing an active waveguide capable of transmitting and filtering unidirectional information. Finally, we illustrate this mechanism in another class of metamaterials that shows the breaking of ‘supersymmetry’23,24 causing only antisolitons to be driven. Our observations and models demonstrate a subtle interplay between non-reciprocity and topological solitons, whereby solitons create their own driving force by locally straining the material. Beyond the scope of our study, non-reciprocal solitons might provide an efficient driving mechanism for robotic locomotion25 and could emerge in other settings, for example, quantum mechanics26,27, optics28,29,30 and soft matter31.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-reciprocal topological solitons.
Fig. 2: Solitons and antisolitons travel in the same direction.
Fig. 3: Independent control of solitons and antisolitons.
Fig. 4: Non-reciprocal solitons in the Kane–Lubensky chain.

Similar content being viewed by others

Data availability

All the data supporting this study are available on the public repository https://uva-hva.gitlab.host/published-projects/non-reciprocal-topological-solitons.

Code availability

All the codes supporting this study are available on the public repository https://uva-hva.gitlab.host/published-projects/non-reciprocal-topological-solitons.

References

  1. Chernodub, M., Hu, S. & Niemi, A. J. Topological solitons and folded proteins. Phys. Rev. E 82, 011916 (2010).

    Article  ADS  Google Scholar 

  2. Heidmann, P., Bah, I. & Berti, E. Imaging topological solitons: the microstructure behind the shadow. Phys. Rev. D 107, 084042 (2023).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Dauxois, T. & Peyrard, M. Physics of Solitons (Cambridge Univ. Press, 2006).

  4. Bennett, C. H., Büttiker, M., Landauer, R. & Thomas, H. Kinematics of the forced and overdamped sine-Gordon soliton gas. J. Stat. Phys. 24, 419–442 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  5. Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kochmann, D. M. & Bertoldi, K. Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl. Mech. Rev. 69, 050801 (2017).

    Article  ADS  Google Scholar 

  10. Nadkarni, N., Daraio, C. & Kochmann, D. M. Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation. Phys. Rev. E 90, 023204 (2014).

    Article  ADS  Google Scholar 

  11. Nadkarni, N., Arrieta, A. F., Chong, C., Kochmann, D. M. & Daraio, C. Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116, 244501 (2016).

    Article  ADS  PubMed  Google Scholar 

  12. Nadkarni, N., Daraio, C., Abeyaratne, R. & Kochmann, D. M. Universal energy transport law for dissipative and diffusive phase transitions. Phys. Rev. B 93, 104109 (2016).

    Article  ADS  Google Scholar 

  13. Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Janbaz, S. & Coulais, C. Diffusive kinks turn kirigami into machines. Nat. Commun. 15, 1255 (2024).

  15. Coulais, C., Fleury, R. & van Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2020).

    Article  Google Scholar 

  16. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  17. Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Article  Google Scholar 

  18. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS  Google Scholar 

  20. Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  23. Chen, B. G. G., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  24. Upadhyaya, N., Chen, B. G. & Vitelli, V. Nuts and bolts of supersymmetry. Phys. Rev. Res. 2, 043098 (2020).

    Article  CAS  Google Scholar 

  25. Brandenbourger, M., Scheibner, C., Veenstra, J., Vitelli, V. & Coulais, C. Limit cycles turn active matter into robots. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.08837 (2022).

  26. Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su-Schrieffer-Heeger model. Nat. Commun. 7, 13986 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photon. 16, 380–383 (2022).

    Article  ADS  CAS  Google Scholar 

  28. Pernet, N. et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat. Phys. 18, 678–684 (2022).

    Article  CAS  Google Scholar 

  29. del Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically induced squeezing. Nature 606, 82–87 (2022).

    Article  ADS  PubMed  Google Scholar 

  30. Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article  CAS  Google Scholar 

  31. Zhao, H., Tai, J. B., Wu, J.-S. & Smalyukh, I. I. Liquid crystal defect structures with möbius strip topology. Nat. Phys. 19, 451–459 (2023).

    Article  CAS  Google Scholar 

  32. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).

    Google Scholar 

  34. McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helbig, T. et al. Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article  CAS  Google Scholar 

  36. Mathew, J. P., Pino, J. D. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotech. 15, 198–202 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article  CAS  Google Scholar 

  38. Bililign, E. S. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2021).

    Article  Google Scholar 

  39. Poncet, A. & Bartolo, D. When soft crystals defy Newton’s third law: nonreciprocal mechanics and dislocation motility. Phys. Rev. Lett. 128, 048002 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Tan, T. H. et al. Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Rosa, M. I. N. & Ruzzene, M. Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions. New J. Phys. 22, 053004 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  42. Scheibner, C., Irvine, W. T. M. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  43. Nagatani, T. The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002).

    Article  ADS  CAS  Google Scholar 

  44. Librandi, G., Tubaldi, E. & Bertoldi, K. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12, 3454 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang, M. & Arrieta, A. F. Solitary waves in bistable lattices with stiffness grading: augmenting propagation control. Phys. Rev. E 98, 042205 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Braverman, L., Scheibner, C., VanSaders, B. & Vitelli, V. Topological defects in solids with odd elasticity. Phys. Rev. Lett. 127, 268001 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  47. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).

    Article  ADS  CAS  Google Scholar 

  48. Deng, B., Wang, P., He, Q., Tournat, V. & Bertoldi, K. Metamaterials with amplitude gaps for elastic solitons. Nat. Commun. 9, 1–8 (2018).

    Article  Google Scholar 

  49. Peyrard, M. & Kruskal, M. D. Kink dynamics in the highly discrete sine-Gordon system. Phys. D: Nonlinear Phenom. 14, 88–102 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  50. Braun, O. M., Hu, B. & Zeltser, A. Driven kink in the Frenkel-Kontorova model. Phys. Rev. E 62, 4235–4245 (2000).

    Article  ADS  CAS  Google Scholar 

  51. Kivshar, Y. S. & Malomed, B. A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989).

    Article  ADS  Google Scholar 

  52. Kivshar, Y. S., Pelinovsky, D. E., Cretegny, T. & Peyrard, M. Internal modes of solitary waves. Phys. Rev. Lett. 80, 5032–5035 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Kosevich, A. M. & Kivshar, Y. S. The perturbation-induced evolution of a soliton-antisoliton pair in the sine-Gordon system. Fiz. Nizk. Temp. 12, 1270 (1982).

    Google Scholar 

  54. Krasnov, V. M. Radiative annihilation of a soliton and an antisoliton in the coupled sine-Gordon equation. Phys. Rev. B 85, 134525 (2012).

    Article  ADS  Google Scholar 

  55. Guo, X., Guzman, M., Carpentier, D., Bartolo, D. & Coulais, C. Non-orientable order and non-commutative response in frustrated metamaterials. Nature 618, 506–512 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric josephson junctions. Nat. Nanotech. 17, 39–44 (2022).

    Article  ADS  CAS  Google Scholar 

  57. Yang, T. et al. Bifurcation instructed design of multistate machines. Proc. Natl Acad. Sci. USA 120, e2300081120 (2023).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pinto-Ramos, D., Alfaro-Bittner, K., Clerc, M. G. & Rojas, R. G. Nonreciprocal coupling induced self-assembled localized structures. Phys. Rev. Lett. 126, 194102 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  59. Zwicker, D. Py-PDE: a python package for solving partial differential equations. J. Open Source Softw. 5, 2158 (2020).

    Article  ADS  Google Scholar 

  60. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Article  CAS  Google Scholar 

  61. Zhou, Y., Chen, B. G., Upadhyaya, N. & Vitelli, V. Kink-antikink asymmetry and impurity interactions in topological mechanical chains. Phys. Rev. E. 95, 022202 (2017).

    Article  ADS  PubMed  Google Scholar 

  62. Faddeev, L. D. & Takhtajan, L. A. Hamiltonian Methods in the Theory of Solitons (Springer, 1987).

Download references

Acknowledgements

We thank R. Hassing and K. van Nieuwland for technical support and F. van Gorp, J.-S. Caux, J. van Wezel, A. Souslov, J. Binysh and V. Vitelli for insightful discussions. We also thank S. Bouché, Q. Cai and J. Lankhorst for gathering preliminary data in the context of the MSc course ‘Project Academic Skills for Research’ they followed at the University of Amsterdam. We acknowledge funding from the European Research Council under grant agreement no. 852587 and from the Netherlands Organisation for Scientific Research under grant agreement no. VI.Vidi.213.131.3.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and J.V. conceptualized and guided the project. J.V. and X.G. designed the samples and experiments. J.V. carried out the experiments. J.V., X.G. and C.C. carried out the numerical simulations. O.G., C.V.M. and A.S. performed the theoretical study. All authors contributed extensively to the interpretation of the data and the production of the manuscript. J.V. and C.C. wrote the main text. J.V. created the figures and videos. All authors contributed to the writing of the Methods and the Supplementary Information.

Corresponding author

Correspondence to Corentin Coulais.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kun Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Dependence of the Peierls-Nabarro barrier on the nondimensional amplitude D and initial conditions in the Frenkel-Kontorova model.

(abc) The Peierls-Nabarro barrier, regime of instability and (anti)soliton velocities as the continuum limit is approached as a function of the unnormalized non-reciprocity \(\eta \sqrt{D}\) and damping \(\Gamma \sqrt{D}\). As the discreteness parameter D becomes smaller, the line separating stable from unstable solutions approaches Γ = η as predicted for the continuum. The initial condition used corresponds to the experimentally used soliton with single lattice spacing width. In addition, the Peierls-Nabarro barrier gradually decreases and (d) eventually goes to zero, provided that the initial soliton shape also becomes less discrete49. (e) When the activation amplitude ϕ0 of the experimental initial condition is changed, the Peierls-Nabarro barrier also changes but for large enough amplitudes, it becomes constant. (f) When instead of an initial activation angle, an edge oscillator is initialized with some radial velocity \({\dot{\phi }}_{0}\), the Peierls-Nabarro barrier remains constant.

Extended Data Fig. 2 Calibration of experimental parameters.

(a) The nonlinear potential generated by the periodically spaced magnets, as measured with an Instron torsion testing machine. Red line represents the sinusoidal fit used to calibrate the magnetic potential amplitude B. (b) Instron measurement of the elastic forces experienced by a single oscillator connected to two neighboring oscillators. Red line shows the smoothed data and green dashed lines show linear fits around the two potential minima, denoting the elastic coupling strength κ. (c) Oscillation of a single oscillator elastically coupled to two neighbors, used to measure the viscous damping coefficient γ. (d) The biased potential for different amounts of bias δ. (e) The difference between the potential minima ΔV between the two uneven minima plotted versus the bias δ. A linear fit establishes the relation between the bias and δ the effective external force E it corresponds to.

Extended Data Fig. 3 Stability of the soliton.

(a) Snapshots of a soliton in the unstable regime showing the destabilization of high wavenumber modes, found numerically for η = 1.1 and Γ = 1. (b) Growth rates \({\rm{I}}{\rm{m}}(\varOmega )\) of perturbations around the soliton solution for various wavenumbers given by Eq. (9). The dotted line at \({\rm{I}}{\rm{m}}(\varOmega )\) marks the transition between decaying and growing solutions, with high wavenumbers being the first to become unstable as the threshold of stability η = Γ is crossed. (c) Dependence of \({\rm{I}}{\rm{m}}({\varOmega }_{\pm })\) on the wavenumber k for Γ = 1 and η = 0.5 (red) and η = 1.5 (blue). In the latter case, modes in the regions \({\rm{Im}}({\varOmega }_{+}) > 0\) become unstable at \(k=\pm \Gamma /\sqrt{{\eta }^{2}-{\Gamma }^{2}}\) given by the dashed lines.

Extended Data Fig. 4 Kane-Lubensky chain.

Sketch of the Kane-Lubensky chain and its notation conventions.

Extended Data Fig. 5 Insensitivity of non-reciprocal solitons to boundary conditions.

Although at a linear level, the non-Hermitian skin effect causes the energy spectrum to change radically upon changing boundary conditions, nonreciprocal solitons are insensitive to the boundary as their topological charge protects them from amplifying exponentially in space. (a) Simulation of a single Frenkel-Kontorova soliton driven by non-reciprocity (η = 1.1, Γ = 1.3, D = 1.2) under antiperiodic boundary conditions. (b) Simulation of a Frenkel-Kontorova soliton-antisoliton pair driven by non-reciprocity (η = 1.1, Γ = 1.3, D = 1.2) under periodic boundary conditions. Neither periodic, antiperiodic or the open boundary conditions used in the main text affect the stability and velocity of the (anti)soliton.

Extended Data Fig. 6 Solitons with higher topological charge.

(a) Simulation of a staircase of Frenkel-Kontorova solitons under the influence of non-reciprocity (η = 1.1, Γ = 1.3, D = 1.2). As in the single soliton case, (anti)solitons with higher topological charge travel undisturbed at the same steady state velocity.

Extended Data Fig. 7 Effect of non-reciprocal driving and damping on the collision of sine-Gordon solitons.

(a) In the absence of both driving and damping, solitons and antisolitons pass through each other without interacting. (b) For nonzero damping, soliton and antisoliton annihilate and the resulting non-topological solution dissipates away. (c) With only non-reciprocity turned on, both excitations still pass through each other unhindered but are also rendered unstable. (d) Dissipation and non-reciprocity can balance, giving rise to non-reciprocal breather solutions.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenstra, J., Gamayun, O., Guo, X. et al. Non-reciprocal topological solitons in active metamaterials. Nature 627, 528–533 (2024). https://doi.org/10.1038/s41586-024-07097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07097-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing