Skip to main content
Log in

A Three-Dimensional Damaged Region Contour Extraction Approach for Cold Spray Repair

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

With multiple merits compared with thermal spray, cold spray technology is widely applied for various application fields. As part of an intelligent cold spray repair system, an approach for three-dimensional (3D) damage region contour extraction is proposed, which is without nominal Computer-Aided Design models and prior knowledge of damaged workpieces. Moreover, due to partially image processing based, the computation load of the proposed method is lower caused by partially avoiding the 3D point cloud processing. According to the results, it is capable to handle the uneven, sparse and unorganized point cloud to precisely extract 3D contour of damage region. The effectiveness of the proposed approach is highlight. Furthermore, the proposed methods on 3D cloud point to grayscale conversion, two-dimensional (2D) edge detection on images, 3D contour reconstruction from 2D edge are also promising for point cloud processing in other application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Reference

  1. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  CAS  Google Scholar 

  2. S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Technol., 2016, 25(5), p 874-896. https://doi.org/10.1007/s11666-016-0406-8

    Article  Google Scholar 

  3. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49.

    CAS  Google Scholar 

  4. C.J. Huang, H.J. Wu, Y.C. Xie, W.Y. Li, C. Verdy, M.-P. Planche, H.L. Liao, and G. Montavon, Advanced Brass-Based Composites via Cold-Spray Additive-Manufacturing and Its Potential in Component Repairing, Surf. Coatings Technol., 2019, 371, p 211-223. https://doi.org/10.1016/j.surfcoat.2019.02.034

    Article  CAS  Google Scholar 

  5. X. Xie, Z. Tan, C. Chen, Y. Xie, H. Wu, X. Yan, S. Gao, Z. Li, G. Ji, and H. Liao, Synthesis of Carbon Nanotube Reinforced Al Matrix Composite Coatings via Cold Spray Deposition, Surf. Coatings Technol., 2021, 405, 126676. https://doi.org/10.1016/j.surfcoat.2020.126676

    Article  CAS  Google Scholar 

  6. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  CAS  Google Scholar 

  7. H. Wu, C. Huang, X. Xie, S. Liu, T. Wu, T. Niendorf, Y. Xie, C. Deng, M. Liu, H. Liao, and S. Deng, Influence of Spray Trajectories on Characteristics of Cold-Sprayed Copper Deposits, Surf. Coat. Technol., 2021, 405, 126703. https://doi.org/10.1016/j.surfcoat.2020.126703

    Article  CAS  Google Scholar 

  8. P. Cavaliere and A. Silvello, Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray, J. Therm. Spray Technol., 2017, 26(4), p 661-670.

    Article  CAS  Google Scholar 

  9. K. Ogawa and T. Niki, Repairing of Degraded Hot Section Parts of Gas Turbines by Cold Spraying, Key Eng. Mater., 2010, 417-418, p 545-548.

    Article  Google Scholar 

  10. A. Astarita, F. Coticelli, and U. Prisco, Repairing of an Engine Block through the Cold Gas Dynamic Spray Technology, Mater. Res., 2016, 19, p 1226-1231.

    Article  CAS  Google Scholar 

  11. V.K. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Prev., 2008, 8(2), p 164-175.

    Article  Google Scholar 

  12. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650. https://doi.org/10.1016/j.addma.2018.04.017

    Article  CAS  Google Scholar 

  13. C. Chen, S. Gojon, Y. Xie, S. Yin, C. Verdy, Z. Ren, H. Liao, and S. Deng, A Novel Spiral Trajectory for Damage Component Recovery with Cold Spray, Surf. Coatings Technol., 2017, 309, p 719-728. https://doi.org/10.1016/j.surfcoat.2016.10.096

    Article  CAS  Google Scholar 

  14. M.E. Lynch, W. Gu, T. El-Wardany, A. Hsu, D. Viens, A. Nardi, and M. Klecka, Design and Topology/Shape Structural Optimisation for Additively Manufactured Cold Sprayed Components, Virtual Phys. Prototyp., 2013, 8(3), p 213-231. https://doi.org/10.1080/17452759.2013.837629

    Article  Google Scholar 

  15. H. Wu, S. Liu, X. Xie, Y. Zhang, H. Liao, and S. Deng, A Framework for a Knowledge Based Cold Spray Repairing System, J. Intell. Manuf., 2022, 33(6), p 1639-1647. https://doi.org/10.1007/s10845-021-01770-7

    Article  CAS  Google Scholar 

  16. Y. Zhang, Z. Yang, G. He, Y. Qin, and H. Zhang, Remanufacturing-Oriented Geometric Modelling for the Damaged Region of Components, Procedia CIRP, 2015, 29, p 798-803. https://doi.org/10.1016/j.procir.2015.02.164

    Article  Google Scholar 

  17. J. Ma, J. Zhao, and A.L. Yuille, Non-Rigid Point Set Registration by Preserving Global and Local Structures, IEEE Trans. Image Process., 2016, 25(1), p 53-64.

    Article  PubMed  Google Scholar 

  18. J.M. Wilson, C. Piya, Y.C. Shin, F. Zhao, and K. Ramani, Remanufacturing of Turbine Blades by Laser Direct Deposition with Its Energy and Environmental Impact Analysis, J. Clean. Prod., 2014, 80, p 170-178.

    Article  Google Scholar 

  19. C. Piya, J.M. Wilson, S. Murugappan, Y. Shin, and K. Ramani, Virtual Repair: Geometric Reconstruction for Remanufacturing Gas Turbine Blades, 2011, p 895-904. https://doi.org/10.1115/DETC2011-48652.

  20. A. Nguyen and B. Le, “3D Point Cloud Segmentation: A Survey,” 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2013, p 225-230.

  21. A.D. Sappa and M. Devy, Fast Range Image Segmentation by an Edge Detection Strategy, Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001, p 292-299.

  22. B. Bhanu, S. Lee, C.-C. Ho, and T.C. Henderson, Range data processing: representation of surfaces by edges, 1986. https://api.semanticscholar.org/CorpusID:196098971.

  23. J. Chen and B. Chen, Architectural Modeling from Sparsely Scanned Range Data, Int. J. Comput. Vis., 2008, 78(2), p 223-236. https://doi.org/10.1007/s11263-007-0105-5

    Article  Google Scholar 

  24. P.J. Besl and R.C. Jain, Segmentation through Variable-Order Surface Fitting, IEEE Trans. Pattern Anal. Mach. Intell., 1988, 10(2), p 167-192.

    Article  Google Scholar 

  25. J.M. Biosca and J.L. Lerma, Unsupervised Robust Planar Segmentation of Terrestrial Laser Scanner Point Clouds Based on Fuzzy Clustering Methods, ISPRS J. Photogramm. Remote Sens., 2008, 63(1), p 84-98.

    Article  Google Scholar 

  26. S. Filin, Surface Clustering from Airborne Laser Scanning Data, 2002, https://api.semanticscholar.org/CorpusID:17740434.

  27. F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer, Hough-Transform and Extended RANSAC Algorithms for Automatic Detection of 3D Building Roof Planes from Lidar Data, 2007, https://api.semanticscholar.org/CorpusID:893386.

  28. R. Schnabel, R. Wahl, and R. Klein, Efficient RANSAC for Point-Cloud Shape Detection, Comput. Graph. Forum, 2007, 26(2), p 214-226. https://doi.org/10.1111/j.1467-8659.2007.01016.x

    Article  Google Scholar 

  29. J. Strom, A. Richardson, and E. Olson, Graph-Based Segmentation for Colored 3D Laser Point Clouds, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p 2131-2136.

  30. J.R. Schoenberg, A. Nathan, and M. Campbell, Segmentation of Dense Range Information in Complex Urban Scenes, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p 2033-2038.

  31. X.-F. Han, J.S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, A Review of Algorithms for Filtering the 3D Point Cloud, Signal Process. Image Commun., 2017, 57, p 103-112. https://doi.org/10.1016/j.image.2017.05.009

    Article  Google Scholar 

  32. H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, Wiley, New York, 2013.

    Google Scholar 

  33. R. MacAusland, The Moore-Penrose Inverse and Least Squares, Math 420 Adv. Top. Linear Algebr. 2014, p 1-10.

  34. H. Goldstein, C. Poole and J. Safko, Classical Mechanics, American Association of Physics Teachers, London, 2002.

    Google Scholar 

  35. D.M.P. Murti, U. Pujianto, A.P. Wibawa, and M.I. Akbar, K-Nearest Neighbor (K-NN) Based Missing Data Imputation, 2019 5th International Conference on Science in Information Technology (ICSITech), 2019, p 83-88.

  36. S. Zhang, Nearest Neighbor Selection for Iteratively KNN Imputation, J. Syst. Softw., 2012, 85(11), p 2541-2552. https://doi.org/10.1016/j.jss.2012.05.073

    Article  Google Scholar 

  37. J.H. Friedman, J.L. Bentley, and R.A. Finkel, An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Trans. Math. Softw., 1977, 3(3), p 209-226.

    Article  Google Scholar 

  38. N. Dhanachandra, K. Manglem, and Y.J. Chanu, Image Segmentation Using K -Means Clustering Algorithm and Subtractive Clustering Algorithm, Procedia Comput. Sci., 2015, 54, p 764-771. https://doi.org/10.1016/j.procs.2015.06.090

    Article  Google Scholar 

  39. T. Pavlidis, Algorithms for Graphics and Image Processing, Springer, Berlin, 2012.

    Google Scholar 

  40. D. Arthur and S. Vassilvitskii, K-Means++ the Advantages of Careful Seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, p 1027-1035.

  41. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, 1996, p 226-231.

Download references

Acknowledgment

The authors would like to acknowledge Huaiyin Institute of Technology (China), and also the support of the French government for the DECLIC project (Procédé de Réparation par Cold Spray Innovant et Structural).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Huang or Sihao Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Li, W., Raoelison, R.N. et al. A Three-Dimensional Damaged Region Contour Extraction Approach for Cold Spray Repair. J Therm Spray Tech 33, 858–868 (2024). https://doi.org/10.1007/s11666-024-01754-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01754-y

Keywords

Navigation