Skip to main content
Log in

Strapdown Inertial Navigation System Accuracy Improvement Methods Based on Inertial Measuring Unit Rotation: Analytical Review

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper presents the analytical review of an inertial measuring unit (IMU) rotation as a method to improve the accuracy of a strapdown inertial navigation system (SINS). There are two ways to improve the accuracy. One of them is based on the transformation of the error change pattern in the inertial sensors (IS) when using the IMU self-compensation rotation (SCR). The criteria for selecting an efficient SCR law to minimize the accumulated error in the parameters generated by SINS are presented. Along with the advantages of this technology, its weak points that may limit significantly the potentially achievable IMU accuracy are described. The other technique consists in increasing the observability of the IS error model components due to the IMU rotation while filtering the SINS errors. The IS error model is described, and the problem of recursive filtering of the SINS errors is stated to refine these errors, with the reference data on coordinates and motion velocity being available. The methods for quantifying the observability of the IS error model components are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Matveev, V.V., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system (Fundamentals of Strapdown Inertial Navigation Systems Design), Matveev, V.V. and Raspopov, V.Ya., Eds., St. Petersburg: Concern CSRI Elektropribor, JSC, 2009.

  2. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, GNSS Technology and Application Series, 2nd ed., Boston: Artech House, 2013.

    Google Scholar 

  3. Titterton, D.H., and Weston, J.L., Strapdown Inertial Navigation Technology, IEE Radar, Sonar, Navigation, and Avionics Series; 2nd ed., Stevenage: Institution of Electrical Engineers, 2004.

  4. Zel’dovich, S.M., Maltinskii, M.I., Okon, I.M., and Ostromukhov, Ya.G., Avtokompensatsiya instrumental’nykh pogreshnostei girosistem (Self-compensation of Instrumental Errors in Gyroscopic Systems), Leningrad: Sudostroenie, 1976.

  5. Geller, E.S., Inertial system platform rotation, IEEE Transactions on Aerospace and Electronic Systems, 1968, no. 4, pp. 557–568.

  6. Vaisgant, I.B., Choosing the rate of the INS platform forced rotation, Giroskopiya i navigatsiya, 1999, no. 4, pp. 116–120.

  7. Levinson, E., and Majure, R., Accuracy enhancement techniques applied to the marine ring laser inertial navigator (MARLIN), Proc. ION National Technical Meeting, Anaheim, CA, 1987, pp. 71–80

  8. Levinson, E., ter Horst, M., and Willcocks, M., The next generation marine inertial navigator is here now, Proc. IEEE Position, Location and Navigation Symposium (PLANS 1994), 1994, pp. 121–127. https://doi.org/10.1109/PLANS.1994.303304

  9. Ringlein, M.J., Barnett, N.J., and May, M.B., Next generation strategic submarine navigator, AIAA 2000, https:// www.researchgate.net/publication/235060057_Next_Ge-neration_Strategic_Submarine_Navigator, cited January 30, 2024.

  10. Northrop Grumman Delivers 500th AN/WSN-7 Inertial Navigation System to the US Navy, https:// www.epicos.com/article/710172/northrop-grumman-delivers-500th-anwsn-7-inertial-navigation-system-us-navy, cited January 30, 2024.

  11. Wei G., Long X., and Yu X., Research on high precision rotating inertial navigation system with ring laser gyroscope, Proc. 22th Saint Petersburg International Conference on Integrated Navigation Systems, 2015, pp. 279–282.

  12. Shepet’, I.P., et al., Method of compensating the instrumental error of strapdown inertial navigation systems and a device for its implementation, Patent RU 2362977 C1, 26 May, 2008.

  13. Peshekhonov, V.G., Nesenyuk, L.P., Starosel’tsev, L.P., Blazhnov, B.A., and Buravlev, A.S., A stabilized gyrocompass on fiber-optic gyros with rotating unit of sensitive elements, Giroskopiya i navigatsiya, 2002, vol. 36, no. 1, pp. 57–63.

  14. Niu, M., Ma, H., Sun, X., Huang, T., and Song, K., A new self-calibration and compensation method for installation errors of uniaxial rotation module inertial navigation system, Sensors, 2022, vol. 22, no. 10, 3812. https://doi.org/10.3390/s22103812

    Article  Google Scholar 

  15. Volynskii, D.I. et al., A stabilized gyrocompass with rotary inertial measurement unit, Patent RU 2436046 C1, 09.08.2010.

  16. Renkoski, B., The effect of carouseling on MEMS IMU performance for gyro compassing applications, Master thesis, Massachusetts Institute of Technology, 2008.

  17. Du, S., Rotary inertial navigation system with a low-cost MEMS IMU and its integration with GNSS, PhD Thesis (Unpublished), Calgary: University of Calgary, 2015. https://doi.org/10.5072/PRISM/27695

  18. Liang, Q., Litvinenko, Yu.A., and Stepanov, O.A., Method of processing the measurements from two units of micromechanical gyroscopes for solving the orientation problem, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 233–242. https://doi.org/10.1134/S2075108718040041

    Article  Google Scholar 

  19. Liang, Q., Litvinenko, Yu.A., and Stepanov, O.A., Analyzing the error observability of an orientation system based on two rotation units of micromechanical gyroscopes, Proc. 2017 IEEE 2nd International Conference on Control in Technical Systems (CTS 2017), St. Petersburg, 2017, pp. 236–239. https://doi.org/10.1109/CTSYS.2017.8109534

  20. Giovanni, S. C., and Levinson, E., Performance of a ring laser strapdown marine gyrocompass, Proc. ION 7th Annual Meeting, Annapolis, Maryland, U.S., 1981, pp. 311–341. https://doi.org/10.1002/J2161-4296.1981.TB00779.X

  21. Stepanov, A.P., Emel’yantsev, G.I., and Blazhnov, B.A., On the effectiveness of rotation of the inertial measurement unit of a FOG-based platformless INS for marine applications, Gyroscopy and Navigation, 2016, vol. 7, no. 2, pp. 128–136.

    Article  Google Scholar 

  22. Ignat’ev, S.V., Stepanov, A.P., Zav’yalov, P.P., and Vinokurov, I.Yu., Synthesis of measurement unit modulation rotation control algorithm in GPS-aided attitude and heading reference system, Mekhatronika, avtomatizatsiya, upravlenie, 2012, no. 3, pp. 62–67.

  23. Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Estimation of error model parameters for a rotating FOG-based measurement unit of a strapdown INS on a vehicle, Gyroscopy and Navigation, 2021, vol. 12, no. 4, pp. 340−349. https://doi.org/10.1134/S2075108721040040

    Article  Google Scholar 

  24. Liang, Z.-H., Wang, Y.-H., Liao, Z.-K., Guo, H.-G., Luo, H., and Wang, L., A novel calibration method between two marine rotational inertial navigation systems based on state constraint Kalman filter, Proc. 30 th Saint-Petersburg International Conference on Integrated Navigation Systems, 2023, Preprint.

  25. Fan, H.-Y., Xie, Y.-P., Wang, Z., Wang, L., Luo, H., and Yu, X.-D., A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS, Measurement Science and Technology, 2021, vol. 32, no. 11, 115113. https://doi.org/10.1088/1361-6501/ac12ff

    Article  Google Scholar 

  26. Wei, Q., Zha, F., He, H., and Li, B., An improved system-level calibration scheme for rotational inertial navigation systems, Sensors, 2022, vol. 22, no. 19, 7610. https://doi.org/10.3390/s22197610

    Article  Google Scholar 

  27. Lu, Y., Wang, W., Liu, Y., and Guo, Z., An improved rotational modulation scheme for tri-axis rotational inertial navigation system (RINS) with fiber optic gyro (FOG), Applied Sciences, 2023, vol. 13, no. 14, 8394. https://doi.org/10.3390/app13148394

    Article  Google Scholar 

  28. Walsh, Ed., Navy and industry investigate new super-accurate optical gyros for possible use on ballistic missile submarines, Military & Aerospace Electronics, 2001.

    Google Scholar 

  29. Lefevre, H.C., The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology, Optical Fiber Technology, 2013, vol. 19, no. 6, part B, pp. 828–832. https://doi.org/10.1016/j.yofte.2013.08.007

  30. Lefevre, H.C., The fiber-optic gyroscope: Achievement and perspective, Gyroscopy and Navigation, 2012, vol. 3, no. 4, pp. 223−226. https://doi.org/10.1134/S2075108712040062

    Article  Google Scholar 

  31. Paturel, Y., Honthaas, J., Lefèvre, H., and Napolitano, F., One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?, Gyroscopy and Navigation, 2014, vol. 5, no. 1, pp. 1−8. https://doi.org/10.1134/S207510871401009X

    Article  Google Scholar 

  32. Chen, G., Li, K., Wang, W., and Li, P., A novel redundant INS based on triple rotary inertial measurement units, Measurement Science and Technology, 2016, vol. 27, no. 10, 105102. https://doi.org/10.1088/0957-0233/27/10/105102

    Article  Google Scholar 

  33. Yuan, X., Li, J., Zhang, X., Feng, K., Wei, X., Zhang, D., and Mi, J., A low-cost MEMS missile-borne compound rotation modulation scheme, Sensors, 2021, vol. 21, no. 14, 4910. https://doi.org/10.3390/s21144910

    Article  Google Scholar 

  34. Du, S., Sun, W., and Gao, Y., MEMS IMU error mitigation using rotation modulation technique, Sensors, 2016, vol. 16, no. 12, 2017. https://doi.org/10.3390/s16122017

    Article  Google Scholar 

  35. Collin, J., MEMS IMU carouseling for ground vehicles, IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 6, pp. 2242–2251. https://doi.org/10.1109/TVT.2014.2345847

  36. Abdulrahim, K., Heading drift mitigation for low-cost inertial pedestrian navigation, Ph.D. Thesis, University of Nottingham, 2012.

  37. Zhang, Y., Zhou, B., Song, M., Hou, B., Xing, H., and Zhang, R., A novel MEMS gyro North finder design based on the rotation modulation technique, Sensors, 2017, vol. 17, no. 5, 973. https://doi.org/10.3390/s17050973

    Article  Google Scholar 

  38. Niu, M., Sun, X., Ma, H., Zhu, Z., Huang, T., and Song, K., Analysis and design of wireless power transfer system for rotational inertial navigation application, Applied Sciences, 2022, vol. 12, no. 13, 6392. https://doi.org/10.3390/app12136392

    Article  Google Scholar 

  39. Yuan, Z.-G., and Zhan, L., Error analysis of rotary SINS sensor, Sensors & Transducers, 2013, vol. 156, no. 9, pp. 35–39.

    Google Scholar 

  40. Jiang, R., Yang, G.-L., Zou, R., Wang, J., and Li, J., Accurate compensation of attitude angle error in a dual-axis rotation inertial navigation system, Sensors, 2017, vol. 17, no. 3, 615. https://doi.org/10.3390/s17030615

    Article  Google Scholar 

  41. Zhu, T., Wang, L., Zou, T., and Peng, G., A dual-axis rotation scheme for redundant rotational inertial navigation system, Micromachines, 2023, vol. 14, no. 2, 351. https://doi.org/10.3390/mi14020351

    Article  Google Scholar 

  42. Sui, J., Wang, L., Huang, T., and Zhou, Q., Analysis and self-calibration method for asynchrony between sensors in rotation INS, Sensors, 2018, vol. 18, no. 9, 2921. https://doi.org/10.3390/s18092921

    Article  Google Scholar 

  43. Fan, H.-Y., Xie, Y., Wang, Z., Wang, L., Luo, H., and Yu, X., A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS, Measurement Science and Technology, 2021, vol. 32, no. 11, 115113. https://doi.org/10.1088/1361-6501/ac12ff

    Article  Google Scholar 

  44. Design and Development of Fiber Optic Gyroscopes, Udd, E. and Digonnet, Eds., SPIE, 2019.

  45. Lu, P., Lai, J., Liu, J., and Nie, M., The compensation effects of gyros’ stochastic errors in a rotational inertial navigation system, The Journal of Navigation, 2014, vol. 67, no. 6, pp. 1069−1088. https://doi.org/10.1017/S0373463314000319

    Article  Google Scholar 

  46. Zha, F., Chang, L., and He, H., Comprehensive error compensation for dual-axis rotational inertial navigation system, IEEE Sensors Journal, 2020, vol. 20, no. 7, pp. 3788–3802. https://doi.org/10.1109/JSEN.2019.2960532

    Article  Google Scholar 

  47. Single-axis rotation type strapdown inertial navigation system transposition method, Patent of China, CN102221364A, 2011.

  48. Wang, B., Ren, Q., Deng, Z.-H., and Fu, M.-Y., A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system, IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 4, pp. 2353−2362. https://doi.org/10.1109/TIE.2014.2361671

    Article  Google Scholar 

  49. Bai, S., Lai, J., Lyu, P., Xu, X., Liu, M., and Huang, K., A system-level self-calibration method for installation errors in a dual-axis rotational inertial navigation system, Sensors, 2019, vol. 19, no. 18, 4005. https://doi.org/10.3390/s19184005

    Article  Google Scholar 

  50. Sui, J., Wang, L, Huang, T., and Zhou, Q., Analysis and self-calibration method for asynchrony between sensors in rotation INS, Sensors, 2018, vol. 18, no. 9, 2921. https://doi.org/10.3390/s18092921

    Article  Google Scholar 

  51. He, H., Zha, F., Li, F., and Wei, Q., A combination scheme of pure strapdown and dual-axis rotation inertial navigation systems, Sensors, 2023, vol. 23, no. 6, 3091. https://doi.org/10.3390/s23063091

    Article  Google Scholar 

  52. Litvinenko, Yu.A., Optimization of algorithms of a shipboard inertial navigation system, Extended abstract of Cand. Sci. Dissertation, 2005.

  53. Emel’yantsev, G., Stepanov, O., Stepanov, A., Blazhnov, B., Dranitsyna, E., Evstifeev, M., Eliseev, D., and Volynskiy, D., Integrated GNSS/IMU gyrocompass with rotating IMU. Development and test results, Remote Sensing, 2020, vol. 12, no. 22, 3736. https://doi.org/10.3390/rs12223736

    Article  Google Scholar 

  54. Anuchin, O.N. and Emel’yantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnykh ob’ektov (Integrated Systems of Orientation and Navigation for Marine Vehicles), St. Petersburg: CSRI Elektropribor, 2003.

  55. Wang, Z., Cheng, X., and Du, J., Thermal modeling and calibration method in complex temperature field for single-axis rotational inertial navigation system, Sensors, 2020, vol. 20, no. 2, 384. https://doi.org/10.3390/s20020384

    Article  Google Scholar 

  56. Seo, Y.-B., Yu, H., Ryu, K., Lee, I., Oh, J., Kim, C., Lee, S.J., and Park, C., Analysis of gyro bias depending on the position of inertial measurement unit in rotational inertial navigation systems, Sensors, 2022, vol. 22, no. 21, 8355. https://doi.org/10.3390/s22218355

    Article  Google Scholar 

  57. Emel’yantsev, G.I., Starosel’tsev, L.P., and Ignat’ev, S.V., On the rhumb drifts of FOG-based strapdown IMU, Giroskopiya i Navigatsiya, 2005, no. 1 (48), pp. 22–29.

  58. Cai, Q.Z., Yang, G.-L., Song, N.-F., Yin, H.-L., and Liu, Y.-L., Analysis and calibration of the gyro bias caused by geomagnetic field in a dual-axis rotational inertial navigation system, Measurement Science and Technology, 2016, vol. 27, no. 10, 105001. https://doi.org/10.1088/0957-0233/27/10/105001

    Article  Google Scholar 

  59. Liang, Q., and Litvinenko, Yu.A., Algorithm for estimating the inertial sensor errors using two MEMS gyro units, 18th Conference of Young Scientists Navigatsiya i upravlenie dvizheniem (Navigation and Motion Control), 2016, pp. 556−564.

  60. Farhangian, F., Benzerrouk, H., and Landry, R. Jr., Opportunistic in-flight INS alignment using LEO satellites and a rotatory IMU platform, Aerospace, 2021, vol. 8, no. 10, 280. https://doi.org/10.3390/aerospace8100280

    Article  Google Scholar 

  61. Emel’yantsev, G.I., Dranitsyna, E.V., and Blazhnov, B.A., Test bed calibration of FOG-based strapdown inertial measurement unit, Gyroscopy and Navigation, 2012, vol. 3, no. 4, pp. 265–269. https://doi.org/10.1134/S2075108712040037

    Article  Google Scholar 

  62. Zhang, Q., Wang, L., Liu, Z., and Feng, P., An accurate calibration method based on velocity in a rotational inertial navigation system, Sensors, 2015, vol. 15, no. 8, pp. 18443–18458. https://doi.org/10.3390/s150818443

    Article  Google Scholar 

  63. Emel’yantsev, G.I., Blazhnov, B.A., Dranitsyna, E.V., and Stepanov, A.P., Calibration of a precision SINS IMU and construction of IMU-bound orthogonal frame, Gyroscopy and Navigation, 2016, vol. 7, no. 3, pp. 205−213. https://doi.org/10.1134/S2075108716030044

    Article  Google Scholar 

  64. Li, J., Su, L., Wang, F., Li, K., and Zhang, L., An improved online fast self-calibration method for dual-axis RINS based on backtracking scheme, Sensors, 2022, vol. 22, no. 13, 5036. https://doi.org/10.3390/s22135036

    Article  Google Scholar 

  65. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Systems of Orientation and Navigation), Peshekhonov, V.G., Ed., St. Petersburg: Concern CSRI Elektropribor, JSC, 2016.

  66. IEEE Standard for Inertial Systems Terminology. IEEE Std 1559, 2009.

  67. Wang, L., Wu, W., Wei, G., Li, J.-L., and Yu, R.-H., A novel information fusion method for redundant rotational inertial navigation systems based on reduced-order Kalman filter, MATEC Web of Conferences, vol. 160, (2018), 07005. https://doi.org/10.1051/matecconf/201816007005

  68. Liang, Q., Litvinenko, Y.A., and Stepanov, O.A., A solution to the attitude problem using two rotation units of micromechanical gyroscopes, IEEE Transactions on Industrial Electronics, 2020, vol. 67, no. 2, pp. 1357–1365. https://doi.org/10.1109/TIE.2019.2898608

    Article  Google Scholar 

  69. Dranitsyna, E.V., IMU calibration using SINS navigation solution: Selection of the rate table motion scenario, 24 th St. Petersburg International Conference on Integrated Navigation Systems, 2017.

  70. Dranitsyna, E.V., Calibration of IMU of FOG-based precision SINS, Cand. Sci. Dissertation, St. Petersburg, 2016.

  71. Volynskii, D.V., Dranitsyna, E.V., Odintsov, A.A., and Untilov, A.A., Calibration of fiber-optic gyros within strapdown inertial measurement units, Gyroscopy and Navigation, 2012, vol. 3, no. 3, pp. 194−200. https://doi.org/10.1134/S2075108712030108

    Article  Google Scholar 

  72. Lysenko, A.S., Strapdown gyroinclinometer with autocompensation for continuous survey of arbitrarily oriented wellbores, Cand. Sci. Dissertation, St. Petersburg State Electrotechnical University LETI, 2017.

  73. Binder, Ya.I. and Lysenko, A.S., Method of autocompensation of acceleration insensitive drifts of a gyroscopic device, Patent for invention, RU 2603767 C1, 27.11.2016.

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 23-19-00626, https://rscf.ru/project/23-19-00626/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dranitsyna.

Ethics declarations

The authors of this work declare they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dranitsyna, E.V., Sokolov, A.I. Strapdown Inertial Navigation System Accuracy Improvement Methods Based on Inertial Measuring Unit Rotation: Analytical Review. Gyroscopy Navig. 14, 290–304 (2023). https://doi.org/10.1134/S2075108724700020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108724700020

Keywords:

Navigation