Skip to main content

Advertisement

Log in

Enhancing RECK Expression Through miR-21 Inhibition: A Promising Strategy for Bladder Carcinoma Control

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Bladder carcinoma (BC) is the tenth most frequent malignancy worldwide, with high morbidity and mortality rates. Despite recent treatment advances, high-grade BC and muscle-invasive BC present with significant progression and recurrence rates, urging the need for alternative treatments. The microRNA-21 (miR-21) has superexpression in many malignancies and is associated with cellular invasion and progression. One of its mechanisms of action is the regulation of RECK, a tumor suppressor gene responsible for inhibiting metalloproteinases, including MMP9. In a high-grade urothelial cancer cell line, we aimed to assess if miR-21 downregulation would promote RECK expression and decrease MMP9 expression. We also evaluated cellular migration and proliferation potential by inhibition of this pathway. In a T24 cell line, we inhibited miR-21 expression by transfection of a specific microRNA inhibitor (anti-miR-21). There were also control and scramble groups, the last with a negative microRNA transfected. After the procedure, we performed a genetic expression analysis of miR-21, RECK, and MMP9 through qPCR. Migration, proliferation, and protein expression were evaluated via wound healing assay, colony formation assay, flow cytometry, and immunofluorescence.After anti-miR-21 transfection, miR-21 expression decreased with RECK upregulation and MMP9 downregulation. The immunofluorescence assay showed a significant increase in RECK protein expression (p < 0.0001) and a decrease in MMP9 protein expression (p = 0.0101). The anti-miR-21 transfection significantly reduced cellular migration in the wound healing assay (p < 0.0001). Furthermore, in the colony formation assay, the anti-miR-21 group demonstrated reduced cellular proliferation (p = 0.0008), also revealed in the cell cycle analysis by flow cytometry (p = 0.0038). Our results corroborate the hypothesis that miR-21 is associated with BC cellular migration and proliferation, revealing its potential as a new effective treatment for this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets and materials used in this study are available upon request from the corresponding author. Researchers interested in accessing the data or materials for the purpose of academic or research inquiries are encouraged to contact Nayara Izabel Viana at niviana@usp.br. We are committed to promoting transparency and facilitating scientific collaboration, and we will make every effort to provide the necessary data and materials in a timely manner.

Abbreviations

BC:

Bladder cancer

EMT:

Epithelial to mesenchymal transition

MIBC:

Muscle invasive bladder cancer

miRNA:

MicroRNA

MMP:

Metalloproteinases

oncomiRs:

Oncogenic miRs

TAM–Tumor:

Associated macrophages

TS miRs:

Tumor suppressor miRs

UC:

Urothelial carcinoma

References

  • Alexius-Lindgren M, Andersson E, Lindstedt I, Engström W (2014) The RECK gene and biological malignancy–its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res 34(8):3867–3873

    CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136

    Article  CAS  PubMed  Google Scholar 

  • Bajorin DF, Witjes JA, Gschwend JE, Schenker M, Valderrama BP, Tomita Y et al (2021) Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N Engl J Med 384(22):2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Guo Y, Chen Y, Guo Q, Chen J, Li Y et al (2020) LncRNA growth arrest-specific transcript 5 targets miR-21 gene and regulates bladder cancer cell proliferation and apoptosis through PTEN. Cancer Med 9(8):2846–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Zhang X, Li P, Yang C, Tang J, Deng X et al (2016) MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK. Onco Targets Ther 9:5091–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat A et al (2022) Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet 400(10364):1712–1721

    Article  PubMed  Google Scholar 

  • da Silva Gomes PR, Candido P, Ghazarian V, Camargo JA, Guimarães VR, Gonçalves GL et al (2021) Can increased expression of miR-Let-7c reduce the transition potential of high-grade urothelial carcinoma? Mol Biol Rep 48(12):7947–7952

    Article  PubMed  Google Scholar 

  • Dip N, Reis ST, Timoszczuk LS, Viana NI, Piantino CB, Morais DR et al (2012) Stage, grade and behavior of bladder urothelial carcinoma defined by the microRNA expression profile. J Urol 188(5):1951–1956

    Article  PubMed  Google Scholar 

  • Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ (2019) miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 79(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Han L, Yue X, Zhou X, Lan FM, You G, Zhang W et al (2012) MicroRNA-21 expression is regulated by β-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 18(7):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18(3):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36

    Article  CAS  PubMed  Google Scholar 

  • Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W et al (2016) Bladder cancer. Lancet 388(10061):2796–2810

    Article  PubMed  Google Scholar 

  • Kaseb H AN. Bladder Cancer. StatPearls. 2023.

  • Kotzsch M, Farthmann J, Meye A, Fuessel S, Baretton G, Tjan-Heijnen VC et al (2005) Prognostic relevance of uPAR-del4/5 and TIMP-3 mRNA expression levels in breast cancer. Eur J Cancer 41(17):2760–2768

    Article  CAS  PubMed  Google Scholar 

  • Koutsioumpa M, Chen HW, O’Brien N, Koinis F, Mahurkar-Joshi S, Vorvis C et al (2018) MKAD-21 suppresses the oncogenic activity of the miR-21/PPP2R2A/ERK molecular network in bladder cancer. Mol Cancer Ther 17(7):1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13(1):39–53

    Article  CAS  PubMed  Google Scholar 

  • Li R, Qu H, Wang S, Chater JM, Wang X, Cui Y et al (2022) CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res 50(D1):D1139–D1146

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Yin HB, Li XY, Zhu GM, He WY, Gou X (2020) Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int J Oncol 56(1):151–164

    CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  • Nielsen ME, Smith AB, Meyer AM, Kuo TM, Tyree S, Kim WY et al (2014) Trends in stage-specific incidence rates for urothelial carcinoma of the bladder in the United States: 1988 to 2006. Cancer 120(1):86–95

    Article  PubMed  Google Scholar 

  • Parekh DJ, Reis IM, Castle EP, Gonzalgo ML, Woods ME, Svatek RS et al (2018) Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet 391(10139):2525–2536

    Article  PubMed  Google Scholar 

  • Pimenta R, Mioshi CM, Gonçalves GL, Candido P, Camargo JA, Guimarães VR et al (2023) Intratumoral restoration of miR-137 plus cholesterol favors homeostasis of the miR-137/coactivator p160/AR axis and negatively modulates tumor progression in advanced prostate cancer. Int J Mol Sci. 24(11):9633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenta R, Camargo JA, Gonçalves GL, Ghazarian V, Candido P, Guimarães VR et al (2023) Overexpression of miR-17-5p may negatively impact p300/CBP factor-associated inflammation in a hypercholesterolemic advanced prostate cancer model. Mol Biol Rep 50(9):7333–7345

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Huss W, Foster B, Ohm J, Wang J, Azabdaftari G et al (2018) Transcriptional changes associated with. Am J Clin Exp Urol 6(3):138–148

    PubMed  PubMed Central  Google Scholar 

  • Reinhold AK, Krug SM, Salvador E, Sauer RS, Karl-Schöller F, Malcangio M et al (2022) MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Ann N Y Acad Sci 1515(1):184–195

    Article  CAS  PubMed  Google Scholar 

  • Reis ST, Pontes-Junior J, Antunes AA, Dall’Oglio MF, Dip N, Passerotti CC et al (2012) miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar D (2020) miRNA 21: a novel biomarker in the treatment of bladder cancer. Biomark Med 14(12):1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Shao YY, Zhang TL, Wu LX, Zou HC, Li S, Huang J et al (2017) AKT Axis, miR-21, and RECK play pivotal roles in dihydroartemisinin killing malignant glioma cells. Int J Mol Sci. 18(2):350

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al (1998) Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A 95(22):13221–13226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y et al (2004) Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur J Cancer 40(10):1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Teo MY, Rosenberg JE (2018) Perioperative immunotherapy in muscle-invasive bladder cancer and upper tract urothelial carcinoma. Urol Clin North Am 45(2):287–295

    Article  PubMed  Google Scholar 

  • Yip W, Ashrafi A, Daneshmand S (2019) High-grade T1 urothelial carcinoma: where do we stand? Curr Urol Rep 20(12):79

    Article  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue PY, Leung EP, Mak NK, Wong RN (2010) A simplified method for quantifying cell migration/wound healing in 96-well plates. J Biomol Screen 15(4):427–433

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Huang ZX, Zhong SQ, Fei KL, Cao YH (2020) miR-21 inhibits autophagy and promotes malignant development in the bladder cancer T24 cell line. Int J Oncol 56(4):986–998

    CAS  PubMed  Google Scholar 

  • Zhou L, Lu Y, Liu JS, Long SZ, Liu HL, Zhang J et al (2020) The role of miR-21/RECK in the inhibition of osteosarcoma by curcumin. Mol Cell Probes 51:101534

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    Article  CAS  PubMed  Google Scholar 

  • Zlotta AR, Ballas LK, Niemierko A, Lajkosz K, Kuk C, Miranda G et al (2023) Radical cystectomy versus trimodality therapy for muscle-invasive bladder cancer: a multi-institutional propensity score matched and weighted analysis. Lancet Oncol 24(6):669–681

    Article  PubMed  Google Scholar 

Download references

Funding

We declare that we have not received any funding for the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

PRM, PRSG, PR and FCM. wrote the main manuscript text; PR and RP. prepared figures. PRM, PR, VRG, PC, GLG, JAC, GAS, IS, RP and NIV contributed to study design and performed the in vitro experiments. IS, KRML, WN, STR contributed to intellectual input. KRML, WN, STR, NIV supervised the experiments, contributed to the study design, drafting and critical reading. RP contributed to statistical analysis, drafting and critical reading. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nayara Izabel Viana.

Ethics declarations

Competing Interests

The authors of the article declare that we have no conflicts of interest that could affect the objectivity or integrity of the results presented in this work.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 85 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, P.R.M., da Silva Gomes, P.R., Romão, P. et al. Enhancing RECK Expression Through miR-21 Inhibition: A Promising Strategy for Bladder Carcinoma Control. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10714-8

Keywords

Navigation