Skip to main content
Log in

Generalizing the holographic fishchain

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We attempt to generalize the integrable Gromov–Sever models, the so-called fishchain models, which are dual to biscalar fishnets. We show that they can be derived in any dimension, at least for some integer deformation parameter of the fishnet lattice. In particular, we focus on the study of fishchain models in AdS\(_7\) that are dual to the six-dimensional fishnet models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Here, we can draw an analogy with similar charges in sigma models [18]. This expression can further support the connection between sigma models and fishchain models in the discussion of the continuum limit of biscalar fishnet models [10].

References

  1. N. Gromov and A. Sever, “Derivation of the holographic dual of a planar conformal field theory in 4D,” Phys. Rev. Lett., 123, 081602, 6 pp. (2019).

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Gromov and A. Sever, “Quantum fishchain in AdS\(_5\),” JHEP, 10, 085, 38 pp. (2019); arXiv: 1907.01001.

    Article  ADS  Google Scholar 

  3. N. Gromov and A. Sever, “The holographic dual of strongly \(\gamma\)-deformed \(\mathcal N=4\) SYM theory: Derivation, generalization, integrability and discrete reparametrization symmetry,” JHEP, 02, 035, 31 pp. (2020); arXiv: 1908.10379.

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Caetano, Ö. Gürdoğan, and V. Kazakov, “Chiral limit of \(\mathcal N=4\) SYM and ABJM and integrable Feynman graphs,” JHEP, 03, 077, 42 pp. (2018).

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, and G. Sizov, “Integrability of conformal fishnet theory,” JHEP, 01, 095, 78 pp. (2018); arXiv: 1706.04167.

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Grabner, N. Gromov, V. Kazakov, and G. Korchemsky, “Strongly \(\gamma\)-deformed \(\mathcal{N}=4\) supersymmetric Yang–Mills theory as an integrable conformal field theory,” Phys. Rev. Lett., 120, 111601, 6 pp. (2018).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. B. Zamolodchikov, “ ‘Fishing-net’ diagrams as completely integrable system,” Phys. Lett. B, 97, 63–66 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Gromov, V. Kazakov, and G. Korchemsky, “Exact correlation functions in conformal fishnet theory,” JHEP, 08, 123, 66 pp. (2019); arXiv: 1808.02688.

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Derkachov and E. Olivucci, “Exactly solvable magnet of conformal spins in four dimensions,” Phys. Rev. Lett., 125, 031603, 7 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Basso and D.-L. Zhong, “Continuum limit of fishnet graphs and AdS sigma model,” JHEP, 01, 002, 46 pp. (2019); arXiv: 1806.04105.

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Kazakov and E. Olivucci, “Biscalar integrable conformal field theories in any dimension,” Phys. Rev. Lett., 121, 131601, 6 pp. (2018); arXiv: 1801.09844.

    Article  ADS  MathSciNet  Google Scholar 

  12. L. V. Bork, R. M. Iakhibbaev, N. B. Muzhichkov, and E. S. Sozinov, “Amplitudes in fishnet theories in diverse dimensions and box ladder diagrams,” JHEP, 02, 185, 41 pp. (2021); arXiv: 2011.03295.

    Article  ADS  MathSciNet  Google Scholar 

  13. L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, and D. E. Vlasenko, “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions,” JHEP, 11, 059, 39 pp. (2015); arXiv: 1508.05570.

    Article  MathSciNet  Google Scholar 

  14. V. Kazakov and E. Olivucci, “The loom for general fishnet CFTs,” JHEP, 06, 041, 40 pp. (2023); arXiv: 2212.09732.

    Article  ADS  MathSciNet  Google Scholar 

  15. V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, and I. T. Todorov, Harmonic Analysis: On the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory (Lecture Notes in Physics, Vol. 63), Springer, Berlin (1977).

    Google Scholar 

  16. F. A. Dolan and H. Osborn, “Conformal partial waves and the operator product expansion,” Nucl. Phys. B, 678, 491–507 (2004); arXiv: hep-th/0309180.

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Gromov, J. Julius, and N. Primi, “Open fishchain in \(N=4\) supersymmetric Yang–Mills theory,” JHEP, 07, 127, 49 pp. (2021); arXiv: 2101.01232.

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Hoare, “Integrable deformations of sigma models,” J. Phys. A: Math. Theor., 55, 093001, 78 pp. (2022); arXiv: 2109.14284.

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Simmons-Duffin, “Projectors, shadows, and conformal blocks,” JHEP, 04, 146, 35 pp. (2014); arXiv: 1204.3894.

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Alfimov, N. Gromov, and V. Kazakov, “Chapter 13: \(\mathcal N=4\) SYM quantum spectral curve in BFKL regime,” in: From the Past to the Future: The Legacy of Lev Lipatov (J. Bartels, V. Fadin, E. Levin, A. Levy, V. Kim, and A. Sabio-Vera, eds.), World Sci., Singapore (2021), pp. 335–367.

    Chapter  Google Scholar 

  21. Z. Bajnok, J. Balog, B. Basso, G. P. Korchemsky, and L. Palla, “Scaling function in AdS/CFT from the O(6) sigma model,” Nucl. Phys. B, 811, 438–462 (2009); arXiv: 0809.4952.

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Kazakov, E. Olivucci, and M. Preti, “Generalized fishnets and exact four-point correlators in chiral \(\mathrm{CFT}_4\),” JHEP, 06, 078, 71 pp. (2019); arXiv: 1901.00011.

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Pittelli and M. Preti, “Integrable fishnet from \(\gamma\)-deformed \(\mathcal N=2\) quivers,” Phys. Lett. B, 798, 134971, 5 pp. (2019); arXiv: 1906.03680.

    Article  MathSciNet  Google Scholar 

  24. J. Polchinski and V. Rosenhaus, “The spectrum in the Sachdev–Ye–Kitaev model,” JHEP, 04, 001, 25 pp. (2016); arXiv: 1601.06768.

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Chicherin, S. Derkachov, and A. P. Isaev, “Conformal algebra: R-matrix and star-triangle relation,” JHEP, 04, 020, 49 pp. (2013); arXiv: 1206.4150.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Andrey Onishchenko for many valuable comments and discussions. We are also grateful to Grigory Korchemsky, Fyodor Levkovich-Masliuk, and Nikolay Gromov for their clarifications.

Funding

This work was supported by the Russian Science Foundation under grant No. 21-12-00129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Iakhibbaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 475–491 https://doi.org/10.4213/tmf10601.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Spectrum of nonisotropic lattice for a biscalar fishnet theory

The star–triangle identity [25] is given by

$$\int\,d^dx_0x_{01}^ax_{02}^bx_{03}^c =\pi^{d/2}\frac{\Gamma(a/2+d/2)\Gamma(b/2+d/2)\Gamma(c/2+d/2)} {\Gamma(-a/2)\Gamma(-b/2)\Gamma(-c/2)} x^{-a-d}_{12}x^{-b-d}_{23}x^{-c-d}_{13}, $$
(A.1)
and as \(x_3\to\infty\), we simplify it to
$$\int\,d^dx_0x_{01}^ax_{02}^b =\pi^{d/2}\frac{\Gamma(a/2+d/2)\Gamma(b/2+d/2)\Gamma(-a/2-b/2-d/2)} {\Gamma(-a/2)\Gamma(-b/2)\Gamma(a/2+b/2+d)}x_{12}^{a+b+d}. $$
(A.2)
Then we can use the identity in this form to obtain the spectrum of the wave function for \(J=2\). Conformal symmetry fixes the form of the CFT wave function as
$$\Psi_{S,\Delta,x_0}(x_1,x_2) =\frac{x_{12}^{\Delta-S-d+2\omega}}{x_{01}^{(\Delta-S)/2}x_{02}^{(\Delta-S)/2}} \biggl(2\frac{(nx_{02})}{x_{02}^2}-2\frac{(nx_{01})}{x_{01}^2}\biggr)^S. $$
(A.3)
This wave function plays the role of an eigenvector of the graph-building operator. Therefore, the eigenvalues of the operator can be defined as
$$\mathcal H \mathbin{\stackrel{\scriptscriptstyle{\circ}}{{}_{\vphantom{.}}}} \Psi_{S,\Delta,x_0}=h_{\Delta,S}^{-1}\Psi_{S,\Delta,x_0}, $$
(A.4)
and the graph-building operator is given in the generalized form
$$\mathcal H=\int d^dx_1\,d^dx_2\,\frac{1}{x_{12}^{4\omega}x_{13}^{d-2\omega}x_{24}^{d-2\omega}}. $$
(A.5)
Using inversion with respect to \(x_0\), the star–triangle relation, and integration by parts, as it was done in [8], [11], a spectrum for the nonisotropic lattice integral can be obtained as
$$h_{\Delta,S}=\frac{\Gamma(\omega)^2}{\Gamma(d/2-\omega)^2} \frac{\Gamma(d/4+S/2-\Delta/2)\Gamma(d/4-2\omega+S/2+\Delta/2)} {\Gamma(d/4+S/2+\Delta/2)\Gamma(d/4+2\omega+S/2-\Delta/2)}. $$
(A.6)
In the \(\omega=d/4\) limit, the result in [11] can be reproduced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakhibbaev, R.M., Tolkachev, D.M. Generalizing the holographic fishchain. Theor Math Phys 218, 411–425 (2024). https://doi.org/10.1134/S0040577924030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924030048

Keywords

Navigation