Skip to main content
Log in

Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We explore the Whitham modulation theory and one of its physical applications, the dam-breaking problem for the defocusing Hirota equation that describes the propagation of ultrashort pulses in optical fibers with third-order dispersion and self-steepening higher-order effects. By using the finite-gap integration approach, we deduce periodic solutions of the equation and discuss the degeneration of genus-one periodic solution to a soliton solution. Furthermore, the corresponding Whitham equations based on Riemann invariants are obtained, which can be used to modulate the periodic solutions with step-like initial data. These Whitham equations with the weak dispersion limit are quasilinear hyperbolic equations and elucidate the averaged dynamics of the fast oscillations referred to as dispersive shocks, which occur in the solution of the defocusing Hirota equation. We analyze the case where both characteristic velocities in genus-zero Whitham equations are equal to zero and the values of two Riemann invariants are taken as the critical case. Then by varying these two values as step-like initial data, we study the rarefaction wave and dispersive shock wave solutions of the Whitham equations. Under certain step-like initial data, the point where two genus-one dispersive shock waves begin to collide at a certain time, that is, the point where the genus-two dispersive shock wave appears, is investigated. We also discuss the dam-breaking problem as an important physical application of the Whitham modulation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. P. K. Shukla and B. Eliasson, “Nonlinear aspects of quantum plasma physics,” Phys. Usp., 53, 51–76 (2010).

    Article  ADS  Google Scholar 

  2. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose–Einstein condensation in trapped gases,” Rev. Mod. Phys., 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  3. F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory (Advanced Series in Mathematical Physics, Vol. 14), World Sci., Singapore (1992).

    Google Scholar 

  4. R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,” J. Math. Phys., 14, 805–809 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  5. W. Xun, L. Ju, and E. Fan, “Painlevé-type asymptotics for the defocusing Hirota equation in transition region,” Proc. Roy. Soc. A, 478, 20220401, 14 pp. (2022).

    Article  ADS  Google Scholar 

  6. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,” Phys. Rev. E, 81, 046602, 8 pp. (2010).

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Demontis, G. Ortenzi, and C. van der Mee, “Exact solutions of the Hirota equation and vortex filaments motion,” Phys. D., 313, 61–80 (2015).

    Article  MathSciNet  Google Scholar 

  8. J. Cen and A. Fring, “Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation,” Phys. D., 397, 17–24 (2019).

    Article  MathSciNet  Google Scholar 

  9. J. Chen and R. Tong, “The complex Hamiltonian systems and quasi-periodic solutions in the Hirota equation,” J. Nonlinear Math. Phys., 28, 134–149 (2021).

    Article  MathSciNet  Google Scholar 

  10. Z.-Y. Zhang, “Jacobi elliptic function expansion method for the modified Korteweg– de Vries–Zakharov–Kuznetsov and the Hirota equations,” Rom. J. Phys., 60, 1384–1394 (2015).

    Google Scholar 

  11. W.-Q. Peng, S.-F. Tian, X.-B. Wang, and T.-T. Zhang, “Characteristics of rogue waves on a periodic background for the Hirota equation,” Wave Motion, 93, 102454, 10 pp. (2020).

    Article  MathSciNet  Google Scholar 

  12. X. Gao and H.-Q. Zhang, “Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background,” Nonlinear Dyn., 101, 1159–1168 (2020).

    Article  Google Scholar 

  13. A. M. Kamchatnov, “On improving the effectiveness of periodic solutions of the NLS and DNLS equations,” J. Phys. A: Math. Gen., 23, 2945–2960 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Kamchatnov, “New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability,” Phys. Rep., 286, 199–270 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Flashka, M. G. Forest, and D. W. McLaughlin, “Multiphase averaging and the inverse spectral soluions of the Korteweg–de Vries equation,” Commun. Pure Appl. Math., 33, 739–784 (1980).

    Article  ADS  Google Scholar 

  16. A. M. Kamchatnov, “Whitham equations in the AKNS scheme,” Phys. Lett. A, 186, 387–390 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. B. Whitham, “Non-linear dispersive waves,” Proc. Roy. Soc. London Ser. A, 283, 283–291 (1965).

    MathSciNet  Google Scholar 

  18. G. B. Whitham, Linear and Non-Linear Waves, John Wiley and Sons, New York (1974).

    Google Scholar 

  19. G. A. El and M. A. Hoefer, “Dispersive shock waves and modulation theory,” Phys. D, 333, 11–65 (2016).

    Article  MathSciNet  Google Scholar 

  20. D.-S. Wang, L. Xu, and Z. Xuan, “The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation,” J. Nonlinear Sci., 32, 3, 46 pp. (2022).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. V. Gurevich and L. P. Pitaevskiĭ, “Nonstationary structure of a collisionless shock wave,” Sov. Phys. JETP, 38, 291–297 (1974).

    ADS  Google Scholar 

  22. Y. Kodama, V. U. Pierce, and F.-R. Tian, “On the Whitham equations for the defocusing complex modified KdV equation,” SIAM J. Math. Anal., 40, 1750–1782 (2008).

    Article  MathSciNet  Google Scholar 

  23. G. Biondini and Y. Kodama, “On the Whitham equations for the defocusing nonlinear Schrödinger equation with step initial data,” J. Nonlinear Sci., 16, 435–481 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Zhang, H.-Q. Hao, and R. Guo, “Periodic solutions and Whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation,” Phys. Lett. A, 450, 128369, 19 pp. (2022).

    Article  MathSciNet  Google Scholar 

  25. G. A. El, V. V. Geogjaev, A. V. Gurevich, and A. L. Krylov, “Decay of an initial discontinuity in the defocusing NLS hydrodynamics,” Phys. D, 87, 186–192 (1995).

    Article  MathSciNet  Google Scholar 

  26. Y. Kodama, “The Whitham equations for optical communications: mathematical theory of NRZ,” SIAM J. Appl. Math., 59, 2162–2192 (1999).

    Article  MathSciNet  Google Scholar 

  27. L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatschek, “Gray optical dips in the subpicosecond regime,” Phys. Rev. E, 66, 046616, 8 pp. (2002).

    Article  ADS  Google Scholar 

  28. A. Mahalingam and K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers,” Phys. Rev. E, 64, 046608, 9 pp. (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Professor Yuji Kodama for the valuable suggestions.

Funding

The work was supported by the “Jingying” project of Shandong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyue Li.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 449–474 https://doi.org/10.4213/tmf10592.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Bai, Q. & Zhao, Q. Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation. Theor Math Phys 218, 388–410 (2024). https://doi.org/10.1134/S0040577924030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924030036

Keywords

Navigation