Skip to main content
Log in

One-parameter discrete-time Calogero–Moser system

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new type of integrable one-dimensional many-body systems called a one-parameter Calogero–Moser system. At the discrete level, the Lax pairs with a parameter are introduced and the discrete-time equations of motion are obtained as together with the corresponding discrete-time Lagrangian. The integrability property of this new system can be expressed in terms of the discrete Lagrangian closure relation by using a connection with the temporal Lax matrices of the discrete-time Ruijsenaars–Schneider system, an exact solution, and the existence of a classical \(r\)-matrix. As the parameter tends to zero, the standard Calogero–Moser system is recovered in both discrete-time and continuous-time forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. We note that the CM system in this equation comes with the opposite sign compared with the standard one.

References

  1. F. Calogero, “Exactly solvable one-dimensional many-body problems,” Lett. Nuovo Cimento, 13, 411–416 (1975).

    Article  MathSciNet  Google Scholar 

  2. J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” Adv. Math., 16, 197–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities,” Commun. Math. Phys., 110, 191–213 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Schneider, “Integrable relativistic \(N\)-particle systems in an external potential,” Phys. D, 26, 203–209 (1987).

    Article  MathSciNet  Google Scholar 

  5. F. W. Nijhoff and G.-D. Pang, “A time-discretized version of the Calogero–Moser model,” Phys. Lett. A, 191, 101–107 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. W. Nijhoff, O. Ragnisco, and V. B. Kuznetsov, “Integrable time-discretisation of the Ruijsenaars–Schneider model,” Commun. Math. Phys., 176, 681–700 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. F. W. Nijhoff and A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system,” Glasg. Math. J., 43, 109–123 (2001).

    Article  Google Scholar 

  8. F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system,” Phys. Lett. A, 297, 49–58 (2002); arXiv: nlin/0110027.

    Article  ADS  MathSciNet  Google Scholar 

  9. O. Babelon, D. Bernard, and M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, Cambridge (2003).

    Book  Google Scholar 

  10. S. B. Lobb, F. W. Nijhoff, and G. R. W. Quispel, “Lagrangian multiforms structure for the lattice KP system,” J. Phys. A: Math. Theor., 42, 472002, 11 pp. (2009).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. B. Lobb and F. W. Nijhoff, “Lagrangian multiform structure for the lattice Gel’fand–Dikii hierarchy,” J. Phys. A: Math. Theor., 43, 072003, 11 pp. (2010).

    Article  ADS  Google Scholar 

  12. S. Yoo-Kong, S. B. Lobb, and F. W. Nijhoff, “Discrete-time Calogero–Moser system and Lagrangian 1-form structure,” J. Phys. A: Math. Theor., 44, 365203, 39 pp. (2011).

    Article  MathSciNet  Google Scholar 

  13. S. Yoo-Kong and F. W. Nijhoff, “Discrete-time Ruijsenaars–Schneider system and Lagrangian 1-form structure,” arXiv: 1112.4576.

  14. U. P. Jairuk, S. Yoo-Kong, and M. Tanasittikosol, “The Lagrangian structure of Calogero’s goldfish model,” Theoret. and Math. Phys., 183, 665–683 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. U. Jairuk, S. Yoo-Kong, and M. Tanasittikosol, “On the Lagrangian 1-form structure of the hyperbolic Calogero–Moser system,” Rep. Math. Phys., 79, 299–330 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Piensuk and S. Yoo-Kong, “Geodesic compatibility: Goldfish systems,” Rep. Math. Phys., 87, 45–58 (2021).

    Article  MathSciNet  Google Scholar 

  17. R. Boll, M. Petrera, and Yu. B. Suris, “Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems,” J. Phys. A: Math. Theor., 48, 085203, 28 pp. (2015).

    Article  ADS  Google Scholar 

  18. J. Avan and M. Talon, “Classical \(R\)-matrix structure for the Calogero model,” Phys. Lett. B, 303, 33–37 (1993).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

Umpon Jairuk thanks the Rajamangala University of Technology Thanyaburi (RMUTT) for financial support under the Personnel Development Fund in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Jairuk.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 415–429 https://doi.org/10.4213/tmf10569.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The connection between the Lagrangian and the $$\mathbf M_{\mathrm{RS}}$$ matrix of the RS model

In this appendix, we derive the connection between the one-parameter discrete-time Lagrangian and the RS model matrix

$$\begin{aligned} \, \mathbf M_{\mathrm{RS}}=\sum_{i,j=1}^N\frac{\tilde h_ih_j}{\tilde x_i-x_j+\lambda}E_{ij}. \end{aligned}$$
(A.1)
For simplicity, we start with the case of a \(2\times 2\) matrix given by
$$\mathbf M_{\mathrm{RS}}= \begin{bmatrix} \dfrac{\tilde h_1h_1}{\tilde x_1-x_1+\lambda} & \dfrac{\tilde h_1h_2}{\tilde x_1-x_2+\lambda} \\ \dfrac{\tilde h_2h_1}{\tilde x_2-x_1+\lambda} & \dfrac{\tilde h_2h_2}{\tilde x_2-x_2+\lambda} \end{bmatrix}.$$
We then compute the determinant
$$\begin{aligned} \, \det\mathbf M_{\mathrm{RS}}&= \frac{\tilde h_1h_1\tilde h_2h_2}{(\tilde x_1-x_1+\lambda)(\tilde x_2-x_2+\lambda)}- \frac{\tilde h_2h_1\tilde h_1h_2}{(\tilde x_2-x_1+\lambda)(\tilde x_1-x_2+\lambda)}= \\ &=h_1\tilde h_1h_2\tilde h_2 \biggl[\frac{1}{(\tilde x_1-x_1+\lambda)(\tilde x_2-x_2+\lambda)}-\frac{1}{(\tilde x_2-x_1+\lambda)(\tilde x_1-x_2+\lambda)}\biggr]= \\ &=h_1\tilde h_1h_2\tilde h_2 \biggl[\frac{(\tilde x_2-x_1+\lambda)(\tilde x_1-x_2+\lambda)- (\tilde x_1-x_1+\lambda)(\tilde x_2-x_2+\lambda)}{\prod_{i,j=1,2} (\tilde x_i-x_j+\lambda)}\biggr]. \end{aligned}$$
This equation can be further simplified as follows:
$$ \det\mathbf M_{\mathrm{RS}}=h_1\tilde h_1h_2\tilde h_2 \biggl[\frac{(\tilde x_2-\tilde x_1)(x_1-x_2)}{\prod_{i,j=1,2} (\tilde x_i-x_j+\lambda)}\biggr].$$
(A.2)
Recalling relations [13], we have
$$\begin{aligned} \, &h^2_i=-\frac{\prod_{j=1}^N (x_i-x_j+\lambda)(x_i-\tilde x_j-\lambda)} {\prod_{i,j=1,j\neq i}^N(x_i-x_j)\prod_{j=1}^N (x_i-\tilde x_j)}, \\ &\tilde h_i^2=-\frac{\prod_{j=1}^N (\tilde x_i-x_j+\lambda)(\tilde x_i-\tilde x_j-\lambda)} {\prod_{i,j=1,j\neq i}^N(\tilde x_i-\tilde x_j)\prod_{j=1}^N (\tilde x_i-x_j)}, \end{aligned}$$
and therefore, for \(i,j=1,2\),
$$\begin{aligned} \, &h^2_1=-\frac{(x_1-x_1+\lambda)(x_1-x_2+\lambda)(x_1-\tilde x_1-\lambda)(x_1-\tilde x_2-\lambda)}{(x_1-x_2)(x_1-\tilde x_1)(x_1-\tilde x_2)}, \\ &\tilde h_1^2=\frac{(\tilde x_1-x_1+\lambda)(\hat x_1-x_2+\lambda)(\tilde x_1-\tilde x_1-\lambda)(\tilde x_1-\tilde x_2-\lambda)} {(\tilde x_1-\tilde x_2)(\tilde x_1-x_1)(\tilde x_1-x_2)}, \\ &h^2_2=-\frac{(x_2-x_1+\lambda)(x_2-x_2+\lambda)(x_2-\tilde x_1-\lambda)(x_2-\tilde x_2-\lambda)} {(x_2-x_1)(x_2-\tilde x_1)(x_2-\tilde x_2)}, \\ &\tilde h_2^2=\frac{(\tilde x_2-x_1+\lambda)(\hat x_2-x_2+\lambda)(\tilde x_2-\tilde x_1-\lambda)(\tilde x_2-\tilde x_2-\lambda)} {(\tilde x_2-\tilde x_1)(\tilde x_2-x_1)(\tilde x_2-x_2)}. \end{aligned}$$
Taking the logarithm gives
$$\begin{aligned} \, \ln|h_1|={}&\frac{1}{2}[\ln|\lambda|+\ln|x_1-x_2+\lambda|+\ln|x_1-\tilde x_1-\lambda|+{} \\ &+\ln|x_1-\tilde x_2-\lambda|-\ln|x_1-x_2|-\ln|x_1-\tilde x_1|-\ln|x_1-\tilde x_2, \\ \ln|\tilde h_1|={}&\frac{1}{2}\bigl[\ln|\lambda|+\ln|\tilde x_1-x_1+\lambda|+\ln|\tilde x_1-x_2+\lambda|-{} \\ &-\ln|\tilde x_1-\tilde x_2-\lambda|-\ln|\tilde x_1-\tilde x_2|-\ln|\tilde x_1-x_1|-\ln|\tilde x_1-x_2|], \\ \ln|h_2|={}&\frac{1}{2}[\ln|\lambda|+\ln|x_2-x_1+\lambda|+\ln|x_2-\tilde x_1-\lambda|+{} \\ &+\ln|x_2-\tilde x_2-\lambda|-\ln|x_2-x_1|-\ln|x_2-\tilde x_1|-\ln|x_2-\tilde x_2|], \\ \ln|\tilde h_2|={}&\frac{1}{2}[\ln|\lambda|+\ln|\tilde x_2-x_1+\lambda|+\ln|\tilde x_2-x_2+\lambda|+{} \\ &+\ln|\tilde x_2-\tilde x_1-\lambda|-\ln|\tilde x_2-\tilde x_1|-\ln|\tilde x_2-x_1|-\ln|\tilde x_2-x_2|]. \end{aligned}$$
Hence,
$$\begin{aligned} \, \det\mathbf M_{\mathrm{RS}}={}&\ln|h_1|+\ln|\tilde h_1|+\ln|h_2|+\ln|\tilde h_2|+\ln|\tilde x_2-\tilde x_1|+\ln|x_1-x_2|-\sum_{i,j=1,2}\ln|\tilde x_i-x_j+\lambda|= \\ ={}&2\ln|\lambda|-\sum_{i,j=1,2}\ln|\tilde x_i-x_j+\lambda|= \sum_{i,j=1,2}\ln|x_i-x_j+\lambda|-\sum_{i,j=1,2}\ln|x_i-\tilde x_j|. \end{aligned}$$

Obviously, for \(N\) particles or an \(N\times N\) matrix, we have

$$ \det\mathbf M_{\mathrm{RS}}=\sum_{i,j=1}^N\ln|x_i-x_j+\lambda|-\sum_{i,j=1}^N\ln|x_i-\tilde x_j|,$$
(A.3)
which is indeed the discrete-time Lagrangian for the one-parameter CM system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jairuk, U., Yoo-Kong, S. One-parameter discrete-time Calogero–Moser system. Theor Math Phys 218, 357–369 (2024). https://doi.org/10.1134/S0040577924030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924030012

Keywords

Navigation