Skip to main content
Log in

A comparison of two PPP-RTK models: S-basis choice, network product precision, and user positioning performance

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

PPP-RTK combines the advantages of both precise point positioning (PPP) and real-time kinematic (RTK) techniques. While constructing PPP-RTK models based on undifferenced and uncombined observations offers apparent benefits, these observation equations suffer from a rank deficiency issue. To address this problem, the Singularity-system (S-system) theory can be utilized. This theory imposes constraints on a minimal subset of parameters, known as the S-basis, by setting them to arbitrary values, typically zeros. Despite the existence of multiple options for the S-basis, prevailing research conventionally selects the parameters of one receiver—the pivot—as the S-basis. In this study, we depart from this practice by selecting the mean of receiver-related parameters as the S-basis. This departure prompts an exploration into how the S-basis choices influence PPP-RTK outcomes regarding network product precision and user positioning performance. Our comparative analysis of the mean receiver (MR) and pivot receiver (PR) models unveils distinctions in the combined product precision. These products include satellite clocks, satellite phase biases, and ionospheric delays (excluding tropospheric delays). The distinction emerges because the estimable satellite clocks in the PR model incorporate atmospheric delays specific to the pivot receiver, in contrast to the MR model, which integrates mean atmospheric delays from all receivers. Despite the distinction in the analytical form of combined product and its precision, both model results in similar positioning performance. This is because variations in product precision levels caused by selecting different atmospheric parameters as the S-basis can be nullified by the parameterized atmospheric delays on the user side. With the inclusion of tropospheric delays, the PR and MR models also demonstrate similar performance and yield more accurate user positioning when located near the pivot receiver compared to positions farther from the pivot receiver when employing ambiguity-float network products. This dependence on the pivot receiver stems from both models selecting the pivot receiver ambiguities as the S-basis, while opting for mean ambiguities across all receivers negates the integer nature of ambiguities. Our conclusion underscores that identical positioning outcomes in PR and MR PPP-RTK models rely on both models selecting the same ambiguities as the S-basis. This highlights the potential variability in PPP-RTK performance when different ambiguity parameters are selected as the S-basis, particularly in the absence of network integer ambiguity resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used in this study are available from the National Geodetic Survey (NGS) network (https://geodesy.noaa.gov/CORS/).

References

  • Baarda W (1973) S-transformations and criterion matrices. In: Publications on geodesy, 18, vol 5, no 1. Netherlands Geodetic Commission, Delft, The Netherlands.

  • Collins P, Bisnath S, Lahaye F, Héroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 57(2):123–135. https://doi.org/10.1002/j.2161-4296.2010.tb01772.x

    Article  Google Scholar 

  • Ge M, Gendt G, Ma R, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Grafarend E, Schaffrin B (1976) Equivalence of estimable quantities and invariants in geodetic networks. Zeitschrift Vermessungswes 101(11):485–492

    Google Scholar 

  • Hou P, Zhang B (2023) Decentralized GNSS PPP-RTK. J Geodesy 97(72):1–18

    CAS  Google Scholar 

  • Khodabandeh A, Teunissen P (2015) An analytical study of PPP-RTK corrections: precision, correlation and user-impact. J Geodesy 89(11):1109–1132. https://doi.org/10.1007/s00190-015-0838-9

    Article  Google Scholar 

  • Khodabandeh A, Teunissen PJG (2016) PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. J Geodesy 90(9):837–851

    Article  Google Scholar 

  • Koch K-R (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solutions 5(2):12–28

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x

    Article  Google Scholar 

  • Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geodesy 91(3):253–268

    Article  Google Scholar 

  • Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. In: Publications on Geodesy, 52, Netherlands Geodetic Commission, Delft, The Netherlands.

  • Odijk D, Teunissen PJG, Zhang B (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. J Surv Eng 138(4):193–202

    Article  Google Scholar 

  • Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geodesy 90(1):15–44. https://doi.org/10.1007/s00190-015-0854-9

    Article  Google Scholar 

  • Psychas D, Verhagen S, Teunissen P (2020) Precision analysis of partial ambiguity resolution-enabled PPP using multi-GNSS and multi-frequency signals. Adv Space Res 66(9):2075–2093

    Article  Google Scholar 

  • Psychas D, Teunissen PJG, Verhagen S (2021) A multi-frequency Galileo PPP-RTK convergence analysis with an emphasis on the role of frequency spacing. Remote Sens 13(16):3077. https://doi.org/10.3390/rs13163077

    Article  Google Scholar 

  • Rizos C (2009) Network RTK research and implementation-a geodetic perspective. J Glob Position Syst 1(2):144–150

    Article  Google Scholar 

  • Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geodetic Sci 1(3):204–214. https://doi.org/10.2478/v10156-010-0023-2

    Article  Google Scholar 

  • Steigenberger P et al (2015) Galileo orbit and clock quality of the IGS multi-GNSS experiment. Adv Space Res 55(1):269–281

    Article  Google Scholar 

  • Teunissen PJG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization of geodetic networks. Springer, Berlin

    Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70(1):65–82

    Article  Google Scholar 

  • Teunissen PJG, Montenbruck O (2017) Springer handbook of global navigation satellite systems. Springer, Berlin

    Book  Google Scholar 

  • Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut Astronaut Aviat Ser a 42(4):223–230

    Google Scholar 

  • Verhagen S, Teunissen PJ (2013) The ratio test for future GNSS ambiguity resolution. GPS Solutions 17(4):535–548. https://doi.org/10.1007/s10291-012-0299-z

    Article  Google Scholar 

  • Wielgosz P, Kashani I, Grejner-Brzezinska D (2005) Analysis of long-range network RTK during a severe ionospheric storm. J Geodesy 79(9):524–531

    Article  Google Scholar 

  • Wübbena G, Schmitz M, Bagge A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. Paper presented at the Proc. ION GNSS 2005, The Institute of Navigation, Long Beach, CA, September 13–16

  • Yang Y, Gao W, Guo S, Mao Y, Yang Y (2019) Introduction to BeiDou-3 navigation satellite system. NAVIGATION J Inst Navig 66(1):7–18

    Article  Google Scholar 

  • Zha J, Zhang B, Liu T, Hou P (2021) Ionosphere-weighted undifferenced and uncombined PPP-RTK: theoretical models and experimental results. GPS Solutions 25(4):1–12. https://doi.org/10.1007/s10291-021-01169-0

    Article  Google Scholar 

  • Zhang B, Teunissen PJ, Odijk D (2011) A novel un-differenced PPP-RTK concept. J Navig 64(S1):S180–S191. https://doi.org/10.1017/S0373463311000361

    Article  Google Scholar 

  • Zhang B, Chen Y, Yuan Y (2019) PPP-RTK based on undifferenced and uncombined observations: theoretical and practical aspects. J Geodesy 93(7):1011–1024

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Peter Teunissen, Dr. Amir Khodabandeh, Dr. Robert Odolinski, Dr. Cheng Ke, and two anonymous reviewers for their insightful and constructive comments.

Funding

This work was funded by the National Natural Science Foundation of China (Grant Nos. 42022025, 42304038, 42004016). This work was supported by the Science and Technology Innovation Program of Hunan Province, China (No. 2023RC3217). This work was also supported by the Hubei International Science and Technology Cooperation Project “Research and Development of Key Technologies of Multi-data Positioning System in Middle and low Latitude Areas” (No. 2023EHA004). The corresponding author is supported by the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. initiated the idea, designed the research, and revised the manuscript. P.H. processed the data, analyzed the results, and drafted the manuscript. F.Y. analyzed the results and revised the manuscript. J.Z. checked all the equations and analyzed the results. Y.L. and C.S. revised the manuscript and provided suggestions for improvements.

Corresponding author

Correspondence to Baocheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors read and approved the final manuscript to be published. We agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of (27)

Appendix: Proof of (27)

According to the definitions in Table 2, the sum of estimable satellite clocks and satellite phase biases of the MR model can be written as

$$\begin{aligned} d\tilde{\tilde{t}}^{s} + \tilde{\tilde{\delta }}_{,j}^{s} & = \left( {dt^{s} + d_{,IF}^{s} } \right) - \left( {d\overline{t}_{r} + \overline{d}_{r,IF} } \right) - m_{1}^{s} \overline{\tau }_{r} \\ & \quad + \left( {\delta_{,j}^{s} - d_{,IF}^{s} + \mu_{j} d_{,GF}^{s} } \right) - \left( {\overline{\delta }_{r,j} - \overline{d}_{r,IF} + \overline{d}_{r,GF} } \right) \\ & \quad - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \left( {\delta_{,j}^{s} + \mu_{j} d_{,GF}^{s} } \right) \\ & \quad - \left( {\overline{\delta }_{r,j} + \overline{d}_{r,GF} } \right) - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \left( {\delta_{,j}^{s} + \mu_{j} d_{,GF}^{s} } \right) \\ & \quad - \left( {\overline{\delta }_{r,j} + \overline{d}_{r,GF} } \right) - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} + \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \left( {\delta_{,j}^{s} + \mu_{j} d_{,GF}^{s} } \right) \\ & \quad - \left( {\overline{\delta }_{r,j} + \overline{d}_{r,GF} } \right) - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} \\ & \quad + \mu_{j} \left( {\overline{l}_{r}^{s} + \overline{d}_{r,GF} - d_{,GF}^{s} } \right) - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} + \delta_{,j}^{s} \\ & \quad - \overline{\delta }_{r,j} - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} + \delta_{,j}^{s} \\ & \quad - \overline{\delta }_{r,j} - \lambda_{j} \overline{z}_{r,j}^{s} + \lambda_{j} \overline{z}_{r,j}^{s} - \lambda_{j} z_{1,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} + \delta_{,j}^{s} \\ & \quad - \overline{\delta }_{r,j} - \lambda_{j} \overline{z}_{r,j}^{s} + \lambda_{j} \overline{z}_{1r,j}^{s} - \lambda_{j} \overline{z}_{1r,j}^{1} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} + \delta_{,j}^{s} \\ & \quad - \overline{\delta }_{r,j} - \lambda_{j} \overline{z}_{r,j}^{s} + \lambda_{j} z_{1r,j}^{1s} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} + \delta_{,j}^{s} \\ & \quad - \overline{\delta }_{r,j} - \lambda_{j} \overline{z}_{r,j}^{s} + \overline{\tilde{z}}_{r,j}^{s} - \mu_{j} \overline{\tilde{\tilde{l}}}_{r}^{s} \\ \end{aligned}$$
(A1)

where the items with an overline represent the mean of these receiver-related parameters, e.g., \(d\overline{t}_{r} = \frac{1}{n}\sum\limits_{r = 1}^{n} {d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{t}_{r} }\).

Considering that

$$\begin{aligned} E\left[ { - \overline{\phi }_{r,j}^{s} } \right] & = dt^{s} - d\overline{t}_{r} - m_{1}^{s} \overline{\tau }_{r} + \mu_{j} \overline{l}_{r}^{s} \\ & \quad + \delta_{,j}^{s} - \overline{\delta }_{r,j} - \lambda_{j} \overline{z}_{r,j}^{s} \\ \end{aligned}$$
(A2)

we obtain

$$\begin{aligned} & d\hat{\tilde{\tilde{t}}}^{s} + \hat{\tilde{\tilde{\delta }}}_{,j}^{s} - m_{u}^{s} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\tilde{\tau }}}_{u} + \mu_{j} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\tilde{l}}}_{u}^{s} = - \overline{\hat{\phi }}_{,j}^{s} + \overline{\hat{\tilde{\tilde{z}}}}_{r,j}^{s} \\ & \quad + \mu_{j} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\tilde{l}}}_{u}^{s} - \overline{\hat{\tilde{\tilde{l}}}}_{r}^{s} } \right) - m_{u}^{s} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\tilde{\tau }}}_{u} \\ \end{aligned}$$
(A3)

from which (27) follows.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Ye, F., Liu, Y. et al. A comparison of two PPP-RTK models: S-basis choice, network product precision, and user positioning performance. GPS Solut 28, 90 (2024). https://doi.org/10.1007/s10291-024-01635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-024-01635-5

Keywords

Navigation