Skip to main content

Advertisement

Log in

COVID-19 vaccination affects short-term anti-coagulation levels in warfarin treatment

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Vaccines against SARS-CoV-2 have been recommended across the world, yet no study has investigated whether COVID-19 vaccination influences short-term warfarin anti-coagulation levels. Patients on stable warfarin treatment who received anti-SARS-CoV-2 vaccination were prospectively enrolled and followed up for three months. INR values less than 10 days before vaccination (baseline), 3–5 days (short-term) and 6–14 days (medium-term) after vaccination were recorded as INR0, INR1, and INR2, respectively. The variations of INR values within individuals were compared, and the linear mixed effect model was used to evaluate the variations of INR values at different time points. Logistic regression analysis was performed to determine covariates related to INR variations after COVID-19 vaccination. Vaccination safety was also monitored. There was a significant difference in INR values between INR0 and INR1 (2.15 vs. 2.26, p = 0.003), yet no marked difference was found between INR0 and INR2. The linear mixed effect model also demonstrated that INR variation was significant in short-term but not in medium-term or long-term period after vaccination. Logistic regression analysis showed that no investigated covariates, including age, vaccine dose, genetic polymorphisms of VKORC1 and CYP2C9 etc., were associated with short-term INR variations. Two patients (2.11%) reported gingival hemorrhage in the short-term due to increased INR values. The overall safety of COVID-19 vaccines for patients on warfarin was satisfying. COVID-19 vaccines may significantly influence warfarin anticoagulation levels 3–5 days after vaccination. We recommend patients on warfarin to perform at least one INR monitoring within the first week after COVID-19 vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (2023) Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 21 August 2023

  2. Callaway E (2023) Covid’s future: mini-waves rather than seasonal surges. Nature. https://doi.org/10.1038/d41586-023-01437-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grapsa E, Adamos G, Andrianopoulos I, Tsolaki V, Giannakoulis VG, Karavidas N, Giannopoulou V, Sarri K, Mizi E, Gavrielatou E, Papathanakos G, Mantzarlis KD, Mastora Z, Magira E, Koulouras V, Kotanidou A, Siempos II (2022) Association between vaccination status and mortality among intubated patients with covid-19-related acute respiratory distress syndrome. JAMA Netw Open 5(10):e2235219. https://doi.org/10.1001/jamanetworkopen.2022.35219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vardavas CI, Mathioudakis AG, Nikitara K, Stamatelopoulos K, Georgiopoulos G, Phalkey R, Leonardi-Bee J, Fernandez E, Carnicer-Pont D, Vestbo J, Semenza JC, Deogan C, Suk JE, Kramarz P, Lamb F, Penttinen P (2022) Prognostic factors for mortality, intensive care unit and hospital admission due to sars-cov-2: a systematic review and meta-analysis of cohort studies in europe. Eur Respir Rev 31(166):220098. https://doi.org/10.1183/16000617.0098-2022

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization (2023) Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-%282005%29-emergency-committee-regarding-the-coronavirus-disease-%28covid-19%29-pandemic. Accessed 21 August 2023

  6. Chen Z, Deng X, Fang L, Sun K, Wu Y, Che T, Zou J, Cai J, Liu H, Wang Y, Wang T, Tian Y, Zheng N, Yan X, Sun R, Xu X, Zhou X, Ge S, Liang Y, Yi L, Yang J, Zhang J, Ajelli M, Yu H (2022) Epidemiological characteristics and transmission dynamics of the outbreak caused by the sars-cov-2 omicron variant in shanghai, china: A descriptive study. Lancet Reg Health West Pac 29(100592):100592. https://doi.org/10.1016/j.lanwpc.2022.100592

    Article  PubMed  PubMed Central  Google Scholar 

  7. Centers for Disease Control and Prevention (2023) Interim Clinical Considerations for Use of COVID-19 Vaccines in the United States. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html. Accessed 21 August 2023

  8. Cari L, Naghavi Alhosseini M, Bergamo A, Pacor S, Pierno S, Sava G, Nocentini G (2022) Thrombotic events with or without thrombocytopenia in recipients of adenovirus-based covid-19 vaccines. Front Cardiovasc Med 9:967926. https://doi.org/10.3389/fcvm.2022.967926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrera-Comoglio R, Lane S (2022) Vaccine-induced immune thrombocytopenia and thrombosis after the sputnik V vaccine. N Engl J Med 387(15):1431–1432. https://doi.org/10.1056/NEJMc2210813

    Article  PubMed  Google Scholar 

  10. Lotti E, Masi A, Cappugi C, Fanelli A, Mannini L, Marcucci R, Poli D (2022) Anti-sars-cov-2 vaccination does not influence anticoagulation levels in stable long-term warfarin treatment. Blood Transfus 20(5):433–436. https://doi.org/10.2450/2022.0271-21

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carroll DN, Carroll DG (2009) Fatal intracranial bleed potentially due to a warfarin and influenza vaccine interaction. Ann Pharmacother 43(4):754–760. https://doi.org/10.1345/aph.1L413

    Article  CAS  PubMed  Google Scholar 

  12. Poli D, Chiarugi L, Capanni M, Antonucci E, Abbate R, Gensini GF, Prisco D (2002) Need of more frequent international normalized ratio monitoring in elderly patients on long-term anticoagulant therapy after influenza vaccination. Blood Coagul Fibrinolysis 13(4):297–300. https://doi.org/10.1097/00001721-200206000-00004

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Zhou YZ, Zhou XM, Liu LM, Xu P, Zhang X, Tan SL (2021) Evaluation of the safe multidisciplinary app-assisted remote patient-self-testing (smart) model for warfarin home management during the covid-19 pandemic: study protocol of a multi-center randomized controlled trial. BMC Health Serv Res 21(1):875. https://doi.org/10.1186/s12913-021-06882-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aomori T, Yamamoto K, Oguchi-Katayama A, Kawai Y, Ishidao T, Mitani Y, Kogo Y, Lezhava A, Fujita Y, Obayashi K, Nakamura K, Kohnke H, Wadelius M, Ekström L, Skogastierna C, Rane A, Kurabayashi M, Murakami M, Cizdziel PE, Hayashizaki Y, Horiuchi R (2009) Rapid single-nucleotide polymorphism detection of cytochrome p450 (cyp2c9) and vitamin K epoxide reductase (vkorc1) genes for the warfarin dose adjustment by the smart-amplification process version 2. Clin Chem 55(4):804–812. https://doi.org/10.1373/clinchem.2008.115295

    Article  CAS  PubMed  Google Scholar 

  15. Tan SL, Li Z, Zhang W, Song GB, Liu LM, Peng J, Liu ZQ, Fan L, Meng XG, Wang LS, Chen Y, Zhou XM, Zhou HH (2013) Cytochrome p450 oxidoreductase genetic polymorphisms a503V and rs2868177 do not significantly affect warfarin stable dosage in Han-chinese patients with mechanical heart valve replacement. Eur J Clin Pharmacol 69(10):1769–1775. https://doi.org/10.1007/s00228-013-1544-2

    Article  CAS  PubMed  Google Scholar 

  16. Mannering GJ, Renton KW, el Azhary R, Deloria LB (1980) Effects of interferon-inducing agents on hepatic cytochrome p-450 drug metabolizing systems. Ann N Y Acad Sci 350:314–331. https://doi.org/10.1111/j.1749-6632.1980.tb20631.x

    Article  CAS  PubMed  Google Scholar 

  17. Kramer P, McClain CJ (1981) Depression of aminopyrine metabolism by influenza vaccination. N Engl J Med 305(21):1262–1264. https://doi.org/10.1056/NEJM198111193052106

    Article  CAS  PubMed  Google Scholar 

  18. Renton KW, Gray JD, Hall RI (1980) Decreased elimination of theophylline after influenza vaccination. Can Med Assoc J 123(4):288–290

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Campello E, Bulato C, Simion C, Spiezia L, Radu CM, Gavasso S, Sartorello F, Saggiorato G, Zerbinati P, Fadin M, Tormene D, Simioni P (2022) Assessing clinically meaningful hypercoagulability after covid-19 vaccination: a longitudinal study. Thromb Haemost 122(8):1352–1360. https://doi.org/10.1055/a-1788-5206

    Article  PubMed  PubMed Central  Google Scholar 

  20. Farrow PR, Nicholson KG (1984) Lack of effect of influenza and pneumococcal vaccines on anticoagulation by warfarin. J Infect 9(2):157–160. https://doi.org/10.1016/s0163-4453(84)91156-3

    Article  CAS  PubMed  Google Scholar 

  21. Lipsky BA, Pecoraro RE, Roben NJ, de Blaquiere P, Delaney CJ (1984) Influenza vaccination and warfarin anticoagulation. Ann Intern Med 100(6):835–837. https://doi.org/10.7326/0003-4819-100-6-835

    Article  CAS  PubMed  Google Scholar 

  22. Gomolin IH (1986) Lack of effect of influenza vaccine on warfarin anticoagulation in the elderly. CMAJ 135(1):39–41

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iorio A, Basileo M, Marcucci M, Guercini F, Camilloni B, Paccamiccio E, Vecchioli M, Iorio AM (2010) Influenza vaccination and vitamin K antagonist treatment: a placebo-controlled, randomized, double-blind crossover study. Arch Intern Med 170(7):609–616. https://doi.org/10.1001/archinternmed.2010.49

    Article  CAS  PubMed  Google Scholar 

  24. Yin T, Miyata T (2007) Warfarin dose and the pharmacogenomics of cyp2c9 and vkorc1 - rationale and perspectives. Thromb Res 120(1):1–10. https://doi.org/10.1016/j.thromres.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Chen Y, Li X, Wei X, Chen X, Zhang L, Zhang Y, Xu Q, Wang H, Li Y, Lu C, Chen W, Zeng C, Yin T (2013) Influence of cyp2c9 and vkorc1 genotypes on the risk of hemorrhagic complications in warfarin-treated patients: a systematic review and meta-analysis. Int J Cardiol 168(4):4234–4243. https://doi.org/10.1016/j.ijcard.2013.07.151

    Article  PubMed  Google Scholar 

  26. van Heteren DM, Lijfering WM, van der Meer F, Reitsma PH, Swen JJ, Bos M, van Rein N (2023) Association of vkorc1 polymorphisms and major bleedings in patients who are treated with vitamin K antagonists. J Intern Med 293(1):124–127. https://doi.org/10.1111/joim.13569

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Liu L, Liu X, Xiang M, Zhou L, Huang C, Shen Z, Miao L (2020) The gut microbes, enterococcus and escherichia-shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin. Pharmacol Res 159:104979. https://doi.org/10.1016/j.phrs.2020.104979

    Article  CAS  PubMed  Google Scholar 

  28. Chen W, Qian J, Fu J, Wu T, Lv M, Jiang S, Zhang J (2022) Changes in the gut microbiota may affect the clinical efficacy of oral anticoagulants. Front Pharmacol 13:860237. https://doi.org/10.3389/fphar.2022.860237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giuliano V, Bassotti G, Mourvaki E, Castellani D, Filippucci E, Sabatino G, Gizzi S, Palmerini F, Galli F, Morelli O, Baldoni M, Morelli A, Iorio A (2010) Small intestinal bacterial overgrowth and warfarin dose requirement variability. Thromb Res 126(1):12–17. https://doi.org/10.1016/j.thromres.2009.11.032

    Article  CAS  PubMed  Google Scholar 

  30. Yang S, Li Y, Dai L, Wang J, He P, Li C, Fang X, Wang C, Zhao X, Huang E, Wu C, Zhong Z, Wang F, Duan X, Tian S, Wu L, Liu Y, Luo Y, Chen Z, Li F, Li J, Yu X, Ren H, Liu L, Meng S, Yan J, Hu Z, Gao L, Gao GF (2021) Safety and immunogenicity of a recombinant tandem-repeat dimeric rbd-based protein subunit vaccine (zf2001) against covid-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 21(8):1107–1119. https://doi.org/10.1016/S1473-3099(21)00127-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Hu Y, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q, Zhu F (2021) Safety, tolerability, and immunogenicity of an inactivated sars-cov-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(2):181–192. https://doi.org/10.1016/S1473-3099(20)30843-4

    Article  CAS  PubMed  Google Scholar 

  32. Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, Li M, Jin H, Cui G, Chen P, Wang L, Zhao G, Ding Y, Zhao Y, Yin W (2021) Safety, tolerability, and immunogenicity of an inactivated sars-cov-2 vaccine (coronavac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812. https://doi.org/10.1016/S1473-3099(20)30987-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z, Li M, Lian X, Jiao W, Wang L, Shu Q, Wu Z, Zhao Y, Li Q, Gao Q (2021) Safety, tolerability, and immunogenicity of an inactivated sars-cov-2 vaccine (coronavac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(12):1645–1653. https://doi.org/10.1016/S1473-3099(21)00319-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao L, Li Y, He P, Chen Z, Yang H, Li F, Zhang S, Wang D, Wang G, Yang S, Gong L, Ding F, Ling M, Wang X, Ci L, Dai L, Gao GF, Huang T, Hu Z, Ying Z, Sun J, Zuo X (2023) Safety and immunogenicity of a protein subunit covid-19 vaccine (zf2001) in healthy children and adolescents aged 3–17 years in China: a randomised, double-blind, placebo-controlled, phase 1 trial and an open-label, non-randomised, non-inferiority, phase 2 trial. Lancet Child Adolesc Health 7(4):269–279. https://doi.org/10.1016/S2352-4642(22)00376-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Medical Board (CMB) grant (No.19–343), Wu Jieping Medical Foundation (No.320.6750-2020-04-36), Hunan Provincial Administration of Traditional Chinese Medicine (No. B2023062) and Hunan Provincial Health Commission (No. C2019158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Lan Tan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Clinical Research Ethics Committee of Xiangya Second Hospital of Central South University (No. 2020-054).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LH., Zhou, YZ., Li, TY. et al. COVID-19 vaccination affects short-term anti-coagulation levels in warfarin treatment. J Thromb Thrombolysis 57, 730–738 (2024). https://doi.org/10.1007/s11239-024-02959-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-024-02959-2

Keywords

Navigation