Skip to main content
Log in

Removal of arsenic from arsenic-containing solution in a three-dimensional electrode reactor

三维电极反应器电吸附深度处理含砷废水

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Deep treatment, a method for further reducing the content of a target substance, for toxic arsenic (As) from water is vital to reduce environmental pollution and ensure human health. Here, we employed electrosorption of As(V) from water in a self-made three-dimensional reactor with granular activated carbon (GAC). The As(V) concentration can be decreased from 0.5 to 0.032 mg/L under optimal conditions, and all of the As practically presented as H2AsO4 without As(III), indicating that there was no redox reaction. After kinetic studies and comparisons of pseudo-second-order kinetic, intra-particle diffusion and Boyd models, the electrosorption could be divided into three steps: internal diffusion from the surface of materials to internal pores, liquid film diffusion from the solution to the surface of materials, and the closure of the entire adsorption process to the equilibrium state. In order to verify the cyclic performance of this process, electrosorption-electrodesorption process research was carried out, and it was found that after 8 cycles, the concentration in the effluent was still only 0.098 mg/L, which was lower than the limitation. Above all, both removal efficiency and disposal of adsorption materials should be ameliorated even though As(V) could be removed in depth and recycled.

摘要

水环境中砷的深度处理对减少环境污染和确保人类健康至关重要。自制了三维电极反应器, 以 活性炭颗粒为粒子电极材料, 采用电吸附和物理/化学吸附联合模式实现As(V)的深度处理。经优化后, As(V)浓度可从0.5 mg/L 降至0.032 mg/L, 且均以H2AsO4形式存在, 无As(III), 表明不存在氧化还原 反应。动力学研究发现, 电吸附过程可分为三步:从溶液到电极材料表面的液膜扩散过程、从电极材 料表面到内部孔隙的内扩散过程和电吸附接近平衡状态。为验证该工艺的循环性能, 开展了电吸附-电 脱附工艺研究, 发现经过8 次循环后, 出水浓度仍仅为 0.098 mg/L(低于0.1 mg/L的标准限值), 实现了 含砷废水的高效深度处理, 但去除效率需提升、吸附后材料的处理仍需改进。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. RAHAMAN Md S, RAHMAN Md M, MISE N, S, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management [J]. Environmental Pollution, 2021, 289: 117940. DOI: https://doi.org/10.1016/j.envpol.2021.117940.

    Article  Google Scholar 

  2. SINGH R, SINGH S, PARIHAR P, SINGH V P, et al. Arsenic contamination, consequences and remediation techniques: A review [J]. Ecotoxicology and Environmental Safety, 2015, 112: 247–270. DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009.

    Article  Google Scholar 

  3. SARKAR A, PAUL B. The global menace of arsenic and its conventional remediation − A critical review [J]. Chemosphere, 2016, 158, 37–49. DOI: https://doi.org/10.1016/j.chemosphere.2016.05.043.

    Article  Google Scholar 

  4. ORGANIZATION W H. Guidelines for drinking-water quality: Volume 1, Recommendations [M]// Guidelines for drinking-water quality. Geneva, WHO, 2004: 104–108. DOI: https://doi.org/10.1016/0035-9203(84)90051-8.

    Google Scholar 

  5. SANTOYO-CISNEROS R, RANGEL-MENDEZ J R, NAVA J L, et al. Influence of surface chemistry of activated carbon electrodes on electro-assisted adsorption of arsenate [J]. Journal of Hazardous Materials, 2020, 392: 122349. DOI: https://doi.org/10.1016/j.jhazmat.2020.122349.

    Article  Google Scholar 

  6. GOVINDAPPA H, ABDI G, UTHAPPA U T, et al. Efficient separation of arsenic species of oxyanion As (III) and As (V) by using effective polymer inclusion membranes (PIM) [J]. Chemosphere, 2023, 316: 137851. DOI: https://doi.org/10.1016/j.chemosphere.2023.137851.

    Article  Google Scholar 

  7. LIN Shi-wei, YANG Xiong, LIU Li-hu, et al. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application [J]. Journal of Environmental Management, 2022, 301: 113921. DOI: https://doi.org/10.1016/j.jenvman.2021.113921.

    Article  Google Scholar 

  8. LYU Peng, LI Lian-fang, HUANG Xiao-ya, et al. Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As (III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification [J]. Science of the Total Environment, 2022, 823: 153743. DOI: https://doi.org/10.1016/j.scitotenv.2022.153743.

    Article  Google Scholar 

  9. SARKAR S, HAZRA S, CHAKRABORTY K, et al. Hybrid technique for removal of arsenic from drinking water [J]. Chemical Engineering & Technology, 2023, 46(2): 242–255. DOI: https://doi.org/10.1002/ceat.202100603.

    Article  Google Scholar 

  10. WU Qi-zhou, GAO Ling-shu, HUANG Mi-na, et al. Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water [J]. Advanced Composites and Hybrid Materials, 2022, 5: 1044–1053. DOI: https://doi.org/10.1007/s42114-022-00492-5.

    Article  Google Scholar 

  11. HU Peng-bo, WANG Shu-juan, ZHOU Yu-qun. Strengthened arsenic adsorption over Ni-modified gamma-Al2O3 under different operation conditions: An experimental and simulation study [J]. Chemical Engineering Journal, 2022, 431: 134204. DOI: https://doi.org/10.1016/j.cej.2021.134204.

    Article  Google Scholar 

  12. HU Peng-bo, WANG Shu-juan, ZHOU Yu-qun. As2O3 adsorption enhancement over Ni-modified gamma-Al2O3 in complex flue gas constituents [J]. Separation and Purification Technology, 2022, 278: 119520. DOI: https://doi.org/10.1016/j.seppur.2021.119520.

    Article  Google Scholar 

  13. TEC-CAAMAL E N, RODRIGUEZ-VAZQUEZ R, WEIJMA J, et al. Simulation platform for in-situ Fe(II) oxidation and bioscorodite crystallization in a one-step process for As(V) immobilization from acid wastewater [J]. Minerals Engineering, 2021, 172: 107170. DOI: https://doi.org/10.1016/j.mineng.2021.107170.

    Article  Google Scholar 

  14. WU De-fan, ZHAO Tong, YE Bin, et al. Arsenic precipitation in heavily arsenic-doped czochralski silicon [J]. Physica Status Solidi-Rapid Research Letters, 2023, 17(3): 2200403. DOI: https://doi.org/10.1002/pssr.202200403.

    Article  Google Scholar 

  15. XU Lei, ZHENG Ya-jie, ZHAO Yun-long, et al. Recovery of arsenic oxide, harmless gypsum residue and clean water by lime neutralization and precipitation [J]. Hydrometallurgy, 2023, 215: 105996. DOI: https://doi.org/10.1016/j.hydromet.2022.105996.

    Article  Google Scholar 

  16. ZENG Wei-zhi, HU Hui, XIAO Rui-yang, et al. Study of in-situ precipitation of arsenic bearing crystalline particles during the process of copper electrorefining [J]. Hydrometallurgy, 2021, 199: 105546. DOI: https://doi.org/10.1016/j.hydromet.2020.105546.

    Article  Google Scholar 

  17. ZOU Chan, LI Shuai, HUAN Xuan-zhou, et al. The adsorption mechanism of arsenic in flue gas over the P-doped carbonaceous adsorbent: Experimental and theoretical study [J]. Science of the Total Environment, 2023, 895: 165066. DOI: https://doi.org/10.1016/j.scitotenv.2023.165066.

    Article  Google Scholar 

  18. CHEN P A, PENG C Y, LIU S H, et al. Removal of toxic arsenic(V) from an old endemic black-foot disease groundwater by oxidative electrosorption [J]. Environmental Chemistry, 2023, 20: 137–143. DOI: https://doi.org/10.1071/EN23001.

    Article  Google Scholar 

  19. CUONG D V, WU Po-chang, LIOU S Y H, et al. An integrated active biochar filter and capacitive deionization system for high-performance removal of arsenic from groundwater [J]. Journal of Hazardous Materials, 2022, 423: 127084. DOI: https://doi.org/10.1016/j.jhazmat.2021.127084.

    Article  Google Scholar 

  20. ZHANG Long-yu, WANG Rui, CHAI Wen-cui, et al. Nanostructured porous carbons derived from ZIF-67 frameworks for capacitive deionization ZIF-67 [J]. Journal of Central South University, 2023, 30(8): 2485–2500. DOI: https://doi.org/10.1007/s11771-023-5394-5.

    Article  Google Scholar 

  21. MIN Xiao-bo, LIU Fan-song, WANG Yun-yan, et al. Synthesis and electrochemical behavior of monolayer-Ti3C2Tx for capacitive deionization [J]. Journal of Central South University, 2022, 29(2): 359–372. DOI: https://doi.org/10.1007/s11771-022-4893-0.

    Article  Google Scholar 

  22. QIAO Qi, YANG Xiong, LIU Li-hu, et al. Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules [J]. Journal of Hazardous Materials, 2020, 390: 122165. DOI: https://doi.org/10.1016/j.jhazmat.2020.122165.

    Article  Google Scholar 

  23. AWUAL Md R, SHENASHEN M A, YAITA T, et al. Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent [J]. Water Research, 2012, 46: 5541–5550. DOI: https://doi.org/10.1016/j.watres.2012.07.038.

    Article  Google Scholar 

  24. AWUAL Md R, URATA S, JYO A, et al. Arsenate removal from water by a weak-base anion exchange fibrous adsorbent [J]. Water Research, 2008, 42: 689–696. DOI: https://doi.org/10.1016/j.watres.2007.08.020.

    Article  Google Scholar 

  25. AWUAL Md R, JYO A. Rapid column-mode removal of arsenate from water by crosslinked poly (allylamine) resin [J]. Water Research, 2009, 43: 1229–1236. DOI: https://doi.org/10.1016/j.watres.2008.12.018.

    Article  Google Scholar 

  26. AWUAL Md R, HASAN Md M, ASIRI A M, et al. Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material [J]. Composites Part B. Engineering, 2019, 171: 294–301. DOI: https://doi.org/10.1016/j.compositesb.2019.05.078.

    Article  Google Scholar 

  27. SHAHAT A, HASSAN H M A, AZZAZY H M E, et al. Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media [J]. Chemical Engineering Journal, 2017, 331: 54–63. DOI: https://doi.org/10.1016/j.cej.2017.08.037.

    Article  Google Scholar 

  28. BACKHURST J R. Closure to “Discussion of ‘A preliminary investigation of fluidized bed electrodes’ ” [J]. Power Systems, IEEE Transactions on, 1970, 117(7): 953–954. DOI: https://doi.org/10.1149/L2407679.

    Google Scholar 

  29. DAI Min, ZHANG Man, XIA Ling, et al. Combined electrosorption and chemisorption of As(V) in water by using Fe-rGO@AC electrode [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6532–6538. DOI: https://doi.org/10.1021/acssuschemeng.7b00633.

    Article  Google Scholar 

  30. CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modification and characterisation of a coal-based activated carbon [J]. Carbon, 2005, 43(15): 3132–3143. DOI: https://doi.org/10.1016/j.carbon.2005.06.021.

    Article  Google Scholar 

  31. SEREDYCH M, HULICOVA-JURCAKOVA D, LU G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance [J]. Carbon, 2008, 46(11): 1475–1488. DOI: https://doi.org/10.1016/j.carbon.2008.06.027.

    Article  Google Scholar 

  32. ZHANG Chao, JIANG Yong-hai, LI Yun-lin, et al. Three-dimensional electrochemical process for wastewater treatment: A general review [J]. Chemical Engineering Journal, 2013, 228: 455–467. DOI: https://doi.org/10.1016/j.cej.2013.05.033.

    Article  Google Scholar 

  33. ISLAM M R, GUPTA S S, JANA S K, et al. Industrial utilization of capacitive deionization technology for the removal of fluoride and toxic metal ions (As3+/5+ and Pb2+) [J]. Global Challenges, 2022, 6(4): 2100129. DOI: https://doi.org/10.1002/gch2.202100129.

    Article  Google Scholar 

  34. NI Yu-shan, ZHANG Jie, YANG Zhao-xia, et al. Highly selective capacitive adsorption and rapid desorption of arsenic ions in wastewater achieving by a recyclable urchinlike iron-manganese composite electrode [J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108897. DOI: https://doi.org/10.1016/j.jece.2022.108897.

    Article  Google Scholar 

  35. SONG Yun-fei, KONG Ai-qun, JI Yan-hong, et al. Adsorption for copper(II) ion with chitosan-SP/PET composite adsorbent enhanced by electric field [J]. Adsorption Science & Technology, 2019, 37: 274–287. DOI: https://doi.org/10.1177/0263617419825505.

    Article  Google Scholar 

  36. BAIN E J, CALO J M, SPITZ-STEINBEG R, et al. Electrosorption/electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals [J]. Energy & Fuels, 2010, 24(6): 3415–3421. DOI: https://doi.org/10.1021/ef901542q.

    Article  Google Scholar 

  37. HASAN Md M, KUBRA K T, HASAN Md N, et al. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater [J]. Journal of Molecular Liquids, 2022, 371: 121125. DOI: https://doi.org/10.1016/j.molliq.2022.121125.

    Article  Google Scholar 

  38. AWUAL Md R, HASAN Md N, HASAN Md M, et al. Green and robust adsorption and recovery of Europium(III) with a mechanism using hybrid donor conjugate materials [J]. Separation and Purification Technology, 2023, 319: 124088. DOI: https://doi.org/10.1016/j.seppur.2023.124088.

    Article  Google Scholar 

  39. ZHANG Tao, NIE Xin-bin, YUE Xue-jie, et al. Hierarchical porous BiOCl/LDHs composites templated from cotton fibers for efficient removal of dyes from aqueous solution [J]. Fibers and Polymers, 2018, 19: 697–702. DOI: https://doi.org/10.1007/s12221-018-7815-x.

    Article  Google Scholar 

  40. HE C, LIAN Bo-yue, MA Jin-xing, et al. Scale-up and modelling of flow-electrode CDI using tubular electrodes [J]. Water Research, 2021, 203: 117498. DOI: https://doi.org/10.1016/j.watres.2021.117498.

    Article  Google Scholar 

  41. XIONG Ya, STRUNK P J, XIA Hong-yun, et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode [J]. Water Research, 2001, 35: 4226–4230. DOI: https://doi.org/10.1016/S0043-1354(01)00147-6.

    Article  Google Scholar 

  42. LIN Sen, JIN Jun-jie, SUN Shu-ying, et al. Removal of arsenic contaminants using a novel porous nanoadsorbent with superior magnetic recovery [J]. Chemical Engineering Science: X, 2020, 8: 100069. DOI: https://doi.org/10.1016/j.cesx.2020.100069.

    Google Scholar 

  43. MANIRETHAN V, RAVAL K, BALAKRISHNAN R M. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri [J]. Environmental Pollution, 2020, 257: 113576. DOI: https://doi.org/10.1016/j.envpol.2019.113576.

    Article  Google Scholar 

  44. RAHMAN Md A, LAMB D, RAHMAN M M, et al. Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar [J]. Journal of Hazardous Materials, 2020, 409: 124488. DOI: https://doi.org/10.1016/j.jhazmat.2020.124488.

    Article  Google Scholar 

  45. AZIZIAN S. Kinetic models of sorption [J]. Journal of Colloid and Interface Science, 2004, 276: 41–52. DOI: https://doi.org/10.1016/j.jcis.2004.03.048.

    Article  Google Scholar 

  46. HO Y S. Review of second-order models for asorption systems [J]. Chem Inform, 2006, 136(3): 681–689. DOI: https://doi.org/10.1016/j.jhazmat.2005.12.043.

    Google Scholar 

  47. KONG Fan-tai, LIANG Chao-ping, WANG Lu-hua, et al. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2-based cathode materials [J]. Advanced Energy Materials, 2018, 9: 1802586. DOI: https://doi.org/10.1002/aenm.201802586.

    Article  Google Scholar 

  48. LUO Yong-jian, WANG Yun-yan, XU Hui, et al. Electro-enhanced adsorption of As(V) by activated carbon in three-dimensional electrode reactor [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(6): 2080–2090. DOI: https://doi.org/10.1016/S1003-6326(22)65932-6.

    Article  Google Scholar 

  49. SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics [J]. Chemical Engineering Journal, 2016, 300: 254–263. DOI: https://doi.org/10.1016/j.cej.2016.04.079.

    Article  Google Scholar 

  50. LAI Yu-xian, WANG Fei, ZHANG Yi-mei, et al. UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water [J]. Chemical Engineering Journal, 2019, 378: 122069. DOI: https://doi.org/10.1016/j.cej.2019.122069.

    Article  Google Scholar 

  51. SHI Yue-yue, SHAN Rui, LU Li-li, et al. High-efficiency removal of Cr(VI) by modified biochar derived from glue residue [J]. Journal of Cleaner Production, 2020, 254: 119935. DOI: https://doi.org/10.1016/j.jclepro.2019.119935.

    Article  Google Scholar 

  52. LIANG Qian-wei, LUO Han-jin, GENG Jun-jie, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI) [J]. Chemical Engineering Journal, 2017, 338: 62–71. DOI: https://doi.org/10.1016/j.cej.2017.12.145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LUO Yong-jian wrote and edited the draft of manuscript. WANG Yun-yan provided the concept. HE Zi-tong and XU Huan reviewed the draft of manuscript. SUN Zhu-mei provided the concept.

Corresponding author

Correspondence to Zhu-mei Sun  (孙竹梅).

Ethics declarations

LUO Yong-jian, WANG Yun-yan, HE Zi-tong, XU Huan and SUN Zhu-mei declare that they have no conflict of interest.

Additional information

Foundation item: Project(2021M703651) supported by the Postdoctoral Science Foundation of China; Project(52121004) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China; Project(51825403) supported by the National Natural Science Fundation for Distinguished Young Scholars of China; Project(2021RC2010) supported by the Science and Technology Innovation Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Yj., Wang, Yy., He, Zt. et al. Removal of arsenic from arsenic-containing solution in a three-dimensional electrode reactor. J. Cent. South Univ. 31, 443–459 (2024). https://doi.org/10.1007/s11771-024-5587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5587-6

Key words

关键词

Navigation