Skip to main content
Log in

Microstructure and hot corrosion properties of an Al-Y coating on TiAl alloy

TiAl合金表面Al-Y渗层的抗热腐蚀性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To improve the hot corrosion performance of TiAl alloys, an Al-Y coating was prepared by a pack cementation process. The effect of catalysts on the structure of the Al-Y coating and its thermal shock resistance was studied. The thermal corrosion performance of both the TiAl alloy and the coating in a mixed molten salt system of 25% NaCl+75% Na2SO4 (wt.%) was comparatively investigated. The results showed that the Al-Y coatings prepared with different catalysts had similar structures and good metallurgical bonding with the substrate, which was mainly composed of an Al-rich outer layer, a TiAl3 middle layer, and a TiAl2 inner layer. However, the coating prepared using NH4Cl as the catalyst was more uniform and denser than those formed using NaF and AlCl3·6H2O. The Al-Y coating improved the thermal shock resistance of the TiAl alloy under thermal shock at 1273 K. Hot corrosion tests showed that the lamellar α2-Ti3Al phase in the TiAl alloy first underwent selective corrosion by O and S atoms in the medium, followed by catastrophic corrosion. Moreover, the Al-Y coating formed a dense Al2O3 film in the early stage of hot corrosion, which effectively protected the permeable layer. Upon extending the hot corrosion time, the coating gradually cracks due to the internal and external diffusion of atoms and corrosion stress. The formed cracks served as diffusion channels for S and O atoms, and the TiAl3 phase in the coating continued to decompose, providing more Al atoms to the cracks. This eventually formed a dense layer of Al2O3 to compensate for the cracks, delaying the internal diffusion rate of S and O atoms, and significantly improving the thermal corrosion resistance of the TiAl alloy.

摘要

针对TiAl合金抗热腐蚀性能不足的问题,采用扩散渗法在其表面制备了Al-Y渗层,研究了催化 剂类型对渗层组织结构的影响,分析了渗层的热冲击性能,对比研究了TiAl 基体和Al-Y 渗层在25% NaCl+75% Na2SO4熔盐(质量分数wt.%)中的热腐蚀行为。结果表明:用不同催化剂制备的Al-Y 渗层具 有相似的结构,与基体均为良好的冶金结合,由外向内均由富Al 外层、TiAl3中间层和TiAl2内层构成, 但当采用NH4Cl 为催化剂时,渗层的致密度和均匀性较用NaF和AlCl3·6H2O催化剂好。在1000 °热冲 击下,Al-Y 渗层较基体合金具有更强的抗热冲击性能。TiAl 合金在热腐蚀时,基体中的片层状α2-Ti3Al 相首先与O、S介质发生选择性腐蚀,随后形成灾难性腐蚀;而Al-Y 涂层在热腐蚀初期会形成致 密的Al2O3氧化膜,有效地保护了渗层,随着热腐蚀时间的延长,由于渗层内原子的内外扩散和腐蚀应 力,渗层逐渐开裂,裂纹成为O和S元素的扩散通道,但在此过程中,渗层中的TiAl3相发生分解,为 裂纹部位提供Al 源并形成Al2O3来填补裂纹,延缓了O和S 原子的内扩散速率,增强了TiAl 合金的耐 热腐蚀性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ZOU Qin, GUAN Yong, LI Yan-guo, et al. Advances and perspectives of TiAl alloy and its composites [J]. Journal of Yanshan University, 2020, 44(2): 95–107. DOI: https://doi.org/10.3969/j.issn.1007-791X.2020.02.001. (in Chinese)

    Google Scholar 

  2. CHEN Rui-run, ZHENG De-shuang, GUO Jing-jie, et al. A novel method for grain refinement and microstructure modification in TiAl alloy by ultrasonic vibration [J]. Materials Science and Engineering A, 2016, 653: 23–26. DOI: https://doi.org/10.1016/j.msea.2015.12.001.

    Article  Google Scholar 

  3. LIU Ji-yao, ZHANG Lai-qi, GE Geng-wu. Study of the orientation relationship of the residual α2(Ti3Al) in γ(TiAl) sheet after heat treatment [J]. Journal of Materials Engineering and Performance, 2022, 31(5): 4224–4231. DOI: https://doi.org/10.1007/s11665-021-06490-w.

    Article  Google Scholar 

  4. IMAYEV V M, IMAYEV R M, KHISMATULLIN T G, et al. Microstructure and processing ability of β-solidifying TNM-based γ-TiAl alloys [J]. Materials Science Forum, 2010, 638–642: 235–240. DOI: https://doi.org/10.4028/www.scientific.net/msf.638-642.235.

    Article  Google Scholar 

  5. ZHANG C Y, ZHANG L X, HOU H. First-principles study on the elastic properties of DO19-Ti3Al by the Co, Ni and Ga alloying [J]. Journal of Atomic and Molecular Physics, 2019, 36(6): 1025–1030. DOI: https://doi.org/10.3969/j.issn.1000-0364.2019.06.022.

    Google Scholar 

  6. PAN Yu, LU Xin, LIU Cheng-cheng, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys [J]. Acta Metallurgica Sinica, 2018, 54(1): 93–99. DOI: https://doi.org/10.11900/0412.1961.2017.00143.

    Google Scholar 

  7. TIAN Jin, ZHANG Cong-hui, TIAN Wei, et al. Effects of Co on microstructure and high temperature oxidation resistance of as-cast TiAl-Nb alloy [J]. Rare Metal Materials and Engineering, 2020, 49(10): 3597–3603. (in Chinese)

    Google Scholar 

  8. WANG Xiang-ning, ZHU Lang-ping, YU Wen, et al. Research progress of powder hot isostatic pressing for intermetallic titanium aluminide [J]. Rare Metal Materials and Engineering, 2021, 50(10): 3797–3808. (in Chinese)

    Google Scholar 

  9. MOLAEI R, FATEMI A, PHAN N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects [J]. International Journal of Fatigue, 2018, 117: 352–370. DOI: https://doi.org/10.1016/j.ijfatigue.2018.07.035.

    Article  Google Scholar 

  10. YANG Xian-chao, LI Xuan, XIE Xiao-qing, et al. Research on hot corrosion behavior of TC4 alloy under environments with molten salt [J]. Hot Working Technology, 2020, 49(22): 29–31, 37. DOI: https://doi.org/10.14158/j.cnki.1001-3814.20192918. (in Chinese)

    Google Scholar 

  11. LI Yong-quan, LI Ji-lin, QIN Chun, et al. Microstructure and hot corrosion behavior of Al-Ce-Y coatings on DZ125 nickel-based alloy prepared by pack cementation process [J]. Journal of Central South University, 2020, 27(2): 381–387. DOI: https://doi.org/10.1007/s11771-020-4303-4.

    Article  Google Scholar 

  12. ZHANG Jing, KONG De-jun. Effects of reciprocating speed on corrosive wear behavior of cold-sprayed Al coating on offshore platforms [J]. Physics of Metals and Metallography, 2020, 121(13): 1288–1294. DOI: https://doi.org/10.1134/S0031918X20130207.

    Article  Google Scholar 

  13. LI Yong-quan, LIANG Guo-dong, TIAN Xing-da, et al. Formation mechanism of a Y-modified Cr-Al coating co-deposited on DZ125 alloy and its high-temperature oxidation resistance [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2022, 37(2): 270–276. DOI: https://doi.org/10.1007/s11595-022-2527-x.

    Article  Google Scholar 

  14. LIAO Yi-min, FENG Min, CHEN Ming-hui, et al. Comparative study of hot corrosion behavior of the enamel based composite coatings and the arc ion plating NiCrAlY on TiAl alloy [J]. Acta Metallurgica Sinica, 2019, 55(2): 229–237. DOI: https://doi.org/10.11900/0412.1961.2018.00293.

    Google Scholar 

  15. BOISSONNET G, RZAD E, TRONCY R, et al. High temperature oxidation of enamel coated low-alloyed steel 16Mo3 in water vapor [J]. Coatings, 2023, 13(2): 342. DOI: https://doi.org/10.3390/coatings13020342.

    Article  Google Scholar 

  16. RUBACHA K, GODLEWSKA E, MARS K. Behaviour of a silicon-rich coating on Ti-46Al-8Ta (at.%) in hot-corrosion environments [J]. Corrosion Science, 2017, 118: 158–167. DOI: https://doi.org/10.1016/j.corsci.2017.02.002.

    Article  Google Scholar 

  17. WU Lian-kui, WU Jing-jia, WU Wei-yao, et al. High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating [J]. Corrosion Science, 2019, 146: 18–27. DOI: https://doi.org/10.1016/j.corsci.2018.10.031.

    Article  Google Scholar 

  18. LI Rong-ze, ZHAO Xiao-qin, DUAN Wen-shan, et al. Study on tribological properties of plasma thermal spraying Al2O3 coating sliding against counterparts with high hardness [J]. Surface Technology, 2021, 50(9): 184–195. DOI: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.09.019.

    Google Scholar 

  19. CAI Fei, ZHANG Shi-hong, LI Jin-long, et al. Effect of nitrogen partial pressure on Al-Ti-N films deposited by arc ion plating [J]. Applied Surface Science, 2011, 258(5): 1819–1825. DOI: https://doi.org/10.1016/j.apsusc.2011.10.053.

    Article  Google Scholar 

  20. WU Xiang-qing, XIE Fa-qin, HU Zong-chun, et al. Effect of diffusion treatment on high-temperature oxidation resistance of multi-arc ion plating Al films on TiAl alloy [J]. Advanced Materials Research, 2010, 97–101: 1399–1403. DOI: https://doi.org/10.4028/www.scientific.net/amr.97-101.1399.

    Article  Google Scholar 

  21. LI Yong-quan, XIE Fa-qin, LI Xuan. Si-Al-Y co-deposition coatings prepared on Ti-Al alloy for enhanced high temperature oxidation resistance [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2018, 33(4): 959–966. DOI: https://doi.org/10.1007/s11595-018-1919-4.

    Article  Google Scholar 

  22. COJOCARU M O, BRANZEI M, DRUGA L N. Aluminide diffusion coatings on IN 718 by pack cementation [J]. Materials, 2022, 15(15): 5453. DOI: https://doi.org/10.3390/ma15155453.

    Article  Google Scholar 

  23. GENOVA V, PEDRIZZETTI G, PAGLIA L, et al. Diffusion aluminide coating modified via electroless nickel plating for Ni-based superalloy protection [J]. Surface and Coatings Technology, 2022, 439: 128452. DOI: https://doi.org/10.1016/j.surfcoat.2022.128452.

    Article  Google Scholar 

  24. TIAN Xiao-dong, GUO Xi-ping, SUN Zhi-ping, et al. Effects of Y2O3/Y on Si-B co-deposition coating prepared through HAPC method on pure molybdenum [J]. Journal of Rare Earths, 2016, 34(9): 952–957. DOI: https://doi.org/10.1016/S1002-0721(16)60120-5.

    Article  Google Scholar 

  25. LIN Nai-ming, XIE Fa-qin, ZHOU Jun, et al. Microstructures and wear resistance of chromium coatings on P110 steel fabricated by pack cementation [J]. Journal of Central South University of Technology, 2010, 17(6): 1155–1162. DOI: https://doi.org/10.1007/s11771-010-0612-3.

    Article  Google Scholar 

  26. MENG Jun-sheng, CHEN Ming-xuan, SHI Xiao-ping, et al. Effect of Co on oxidation and hot corrosion behavior of two nickel-based superalloys under Na2SO4-NaCl at 900 °C [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(8): 2402–2414. DOI: https://doi.org/10.1016/S1003-6326(21)65662-5.

    Article  Google Scholar 

  27. JIN Guang-xi, QIAO Li-jie, GAO Ke-wei, et al. Effect of microstructure on hot corrosion behavior of TiAl intermetallics [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(2): 210–215. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2004.02.011. (in Chinese)

    Google Scholar 

  28. MA Jun, JIANG Su meng, GONG Jun, et al. Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 °C [J]. Corrosion Science, 2013, 70: 29–36. DOI: https://doi.org/10.1016/j.corsci.2013.01.004.

    Article  Google Scholar 

  29. GODLEWSKA E, MITORAJ M, LESZCZYNSKA K. Hot corrosion of Ti-46Al-8Ta (at.%) intermetallic alloy [J]. Corrosion Science, 2014, 78: 63–70. DOI: https://doi.org/10.1016/j.corsci.2013.08.032.

    Article  Google Scholar 

  30. XI Yan-jun, LU Jin-bin, WANG Zhi-xin, et al. Effect of nanocrystallization on hot corrosion resistance of Ti-48Al-8Cr-2Ag alloy in molten salts [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 511–516. DOI: https://doi.org/10.1016/S1003-6326(06)60089-7.

    Article  Google Scholar 

  31. LUO Qun, GUO Yan-lin, LIU Bin, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. Journal of Materials Science & Technology, 2020, 44: 171–190. DOI: https://doi.org/10.1016/j.jmst.2020.01.022.

    Article  Google Scholar 

  32. PANG Yue-peng, SUN Dong-ke, GU Qin-fen, et al. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson-mehl-avrami-kolomogorov model with analytical solutions [J]. Crystal Growth & Design, 2016, 16(4): 2404–2415. DOI: https://doi.org/10.1021/acs.cgd.6b00187.

    Article  Google Scholar 

  33. LI Qian, LU Yang-fan, LUO Qun, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. Journal of Magnesium and Alloys, 2021, 9(6): 1922–1941. DOI: https://doi.org/10.1016/j.jma.2021.10.002.

    Article  Google Scholar 

  34. PANG Yue-peng, LI Qian. Insight into the kinetic mechanism of the first-step dehydrogenation of Mg(AlH4)2 [J]. Scripta Materialia, 2017, 130: 223–228. DOI: https://doi.org/10.1016/j.scriptamat.2016.12.015.

    Article  Google Scholar 

  35. LI B, LUO B H, ZHAN G, et al. Effects of Y, Ta and Cr on thermal corrosion behavior of Ni-10%Fe-10%Al-10%Cu alloy at 850°C in cryolite molten atmosphere [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5): 2246–2252. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2012.08.014. (in Chinese)

    Google Scholar 

  36. FU Guang-yan, LI Jian-guang, LIU Qun, et al. Effect of Y2O3 on hot corrosion behavior of mechanical alloying Fe-20Cr-2.5Al alloy [J]. Chinese Rare Earths, 2015, 36(3): 72–77. DOI: https://doi.org/10.16533/J.CNKI.15-1099/TF.201503012. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Yong-quan developed the overarching research goals and edited the draft of the manuscript. LIANG Guo-dong, HAO Qing-rui and LIU Guang-jun validated the proposed method with practical experiments and wrote the first draft of the manuscript. LIU Shu-jing edited the manuscript.

Corresponding author

Correspondence to Yong-quan Li  (李涌泉).

Ethics declarations

LI Yong-quan, HAO Qing-rui, LIANG Guodong, LIU Guang-jun and LIU Shu-jing declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52161009, 51961003) supported by the National Natural Science Foundation of China; Project (2022AAC03224) supported by the Natural Science Foundation of Ningxia, China; Project(XAB2022YW07) supported by the West Light Foundation of the Chinese Academy of Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yq., Hao, Qr., Liang, Gd. et al. Microstructure and hot corrosion properties of an Al-Y coating on TiAl alloy. J. Cent. South Univ. 31, 330–345 (2024). https://doi.org/10.1007/s11771-024-5561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5561-3

Key words

关键词

Navigation