Skip to main content
Log in

Variation of humic carbon and microbial communities in bauxite residue following co-application of straw and phosphogypsum

秸秆-磷石膏联用对赤泥的腐殖质组分和微生物群落的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Humification is one of the critical processes in the ecological restoration of bauxite residue deposit areas. Straw addition is widely used strategy to increase organic carbon in bauxite residue. However, the effect of straw application on the humic carbon fractions in bauxite residue is largely unknown. In this study, the accumulation of humic fractions and associated microbial communities in bauxite residue following straw application were evaluated by humus fractionation and high-throughput sequencing technology. The results showed that straw application significantly increased humic carbon fractions (humic acid and fulvic acid) and humification degree in bauxite residue. The content of humic acid and fulvic acid increased by 27.1% and 22.9% in straw-amended bauxite residue after phosphogypsum addition, respectively. The glucosidase, cellulolytic enzyme, polyphenol oxidase and peroxidase increased by 7.15–8.76 times, 5.64–7.12 times, 2.69–4.57 times and 2.59–4.24 times following the straw application. High-throughput sequencing results indicated that the operational taxonomic unit (OTU) numbers and Shannon index of both bacterial and fungal communities significantly increased following co-application of straw and phosphogypsum. In addition, co-application of straw and phosphogypsum significantly increased the relative abundance of Devosiaceae, Rhizobiaceae, Flavobacteriaceae, Caulobacteraceae, and Cellvibrionaceae in bauxite residue. These findings provide us with a biological perspective of straw on the humification process in bauxite residue.

摘要

腐殖化过程是赤泥土壤化及堆场生态修复的重要环节。本研究采用腐殖质分级和高通量测序技 术, 探究了秸秆和磷石膏联用对赤泥腐殖质组分和微生物群落的影响。结果表明, 秸秆-磷石膏联用显 著增加赤泥胡敏酸和富里酸含量, 提高微生物群落多样性和丰富度, 促进赤泥腐殖化过程。施用秸秆 后, 赤泥中葡萄糖苷酶、纤维素水解酶、多酚氧化酶和过氧化物酶分别升高7.15∼8.76 倍、5.64∼ 7.12 倍、2.69∼4.57 倍和2.59∼4.24 倍, 显著增加DevosiaceaeRhizobiaceaeFlavobacteriaceaeCaulobacteraceaeCellvibrionaceae 等具有纤维素降解和固氮功能微生物类群相对丰度, 提高微生物 群落稳定性。研究结果为外源生物质促进腐殖质累积、驱动赤泥成土进程提供科学依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. XUE Sheng-guo, WU Yu-jun, LI Yi-wei, et al. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288. DOI: https://doi.org/10.1007/s11771-019-4000-3.

    Article  Google Scholar 

  2. RUYTERS S, MERTENS J, VASSILIEVA E, et al. The red mud accident in ajka (hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil [J]. Environmental Science & Technology, 2011, 45(4): 1616–1622. DOI: https://doi.org/10.1021/es104000m.

    Article  Google Scholar 

  3. LI Wang, LIU Yue, ZHU Xiao-bo. Enhanced extraction of scandium and inhibiting of iron from acid leaching solution of red mud by D2EHPA and sodium chloride [J]. Journal of Central South University, 2021, 28(10): 3029–3039. DOI: https://doi.org/10.1007/s11771-021-4827-2.

    Article  Google Scholar 

  4. YUAN Shuai, HUANG Cheng, BAI Zhe, et al. A novel utilization of high-Fe bauxite through co-roasting with coal gangue to separate iron and aluminum minerals [J]. Journal of Central South University, 2023, 30(7): 2166–2178. DOI: https://doi.org/10.1007/s11771-023-5374-9.

    Article  Google Scholar 

  5. WEI Chen, PAN Xiao-lin, PEI Jian-nan, et al. Preparation and characterization of unfired lightweight bricks using dealkalized calcium silicate residue from low-calcium sintering red mud [J]. Journal of Central South University, 2023, 30(6): 1787–1802. DOI: https://doi.org/10.1007/s11771-023-5352-2.

    Article  Google Scholar 

  6. XUE Sheng-guo. Soil formation in bauxite residue: The most promising way to large-scale and ecological disposal [J]. Journal of Central South University, 2019, 26(2): 265–267. DOI: https://doi.org/10.1007/s11771-019-3999-5.

    Article  Google Scholar 

  7. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, et al. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834. DOI: https://doi.org/10.1007/s11356-016-6478-7.

    Article  Google Scholar 

  8. LI Yi-wei, LUO Xing-hua, LI Chu-xuan, et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment [J]. Journal of Central South University, 2019, 26(2): 361–372. DOI: https://doi.org/10.1007/s11771-019-4008-8.

    Article  Google Scholar 

  9. JONES B E H, HAYNES R J, PHILLIPS I R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties [J]. Journal of Environmental Management, 2010, 91(11): 2281–2288. DOI: https://doi.org/10.1016/j.jenvman.2010.06.013.

    Article  Google Scholar 

  10. COURTNEY R, KIRWAN L. Gypsum amendment of alkaline bauxite residue-Plant available aluminium and implications for grassland restoration [J]. Ecological Engineering, 2012, 42: 279–282. DOI: https://doi.org/10.1016/j.ecoleng.2012.02.025.

    Article  Google Scholar 

  11. BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after Initial Treatment [J]. Environmental Science & Technology, 2018, 52(1): 152–161. DOI: https://doi.org/10.1021/acs.est.7b03568.

    Article  Google Scholar 

  12. DI CARLO E, BOULLEMANT A, COURTNEY R. A field assessment of bauxite residue rehabilitation strategies [J]. Science of the Total Environment, 2019, 663: 915–926. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.376.

    Article  Google Scholar 

  13. LIPCZYNSKA-KOCHANY E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review [J]. Chemosphere, 2018, 202: 420–437. DOI: https://doi.org/10.1016/j.chemosphere.2018.03.104.

    Article  Google Scholar 

  14. LIU Meng-li, WANG Chong, LIU Xue-lian, et al. Salinealkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses [J]. Applied Soil Ecology, 2020, 156: 103705. DOI: https://doi.org/10.1016/j.apsoil.2020.103705.

    Article  Google Scholar 

  15. ZHOU Ping, YAN Hui, GU Bao-hua. Competitive complexation of metal ions with humic substances [J]. Chemosphere, 2005, 58(10): 1327–1337. DOI: https://doi.org/10.1016/j.chemosphere.2004.10.017.

    Article  Google Scholar 

  16. KOBIERSKI M, KONDRATOWICZ-MACIEJEWSKA K, BANACH-SZOTT M, et al. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil [J]. Journal of Soils and Sediments, 2018, 18(8): 2777–2789. DOI: https://doi.org/10.1007/s11368-018-1935-1.

    Article  Google Scholar 

  17. COBAN O, de DEYN G B, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands [J]. Science, 2022, 375(6584): 990. DOI: https://doi.org/10.1126/science.abe0725.

    Article  Google Scholar 

  18. YOU Fang, ZHANG Li-ping, YE Jun, et al. Microbial decomposition of biomass residues mitigated hydrogeochemical dynamics in strongly alkaline bauxite residues [J]. The Science of the Total Environment, 2019, 663: 216–226. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.317.

    Article  Google Scholar 

  19. ZHANG Yi-fan, XUE Rui, HE Xuan, et al. Effect of acid production by penicillium oxalicum on physicochemical properties of bauxite residue [J]. Geomicrobiology Journal, 2020, 37(10): 929–936. DOI: https://doi.org/10.1080/01490451.2020.1801907.

    Article  Google Scholar 

  20. TIAN Tao, LIU Zheng, ZHU Feng, et al. Improvement of aggregate-associated organic carbon and its stability in bauxite residue by substrate amendment addition [J]. Land Degradation & Development, 2020, 31(16): 2405–2416. DOI: https://doi.org/10.1002/ldr.3609.

    Article  Google Scholar 

  21. SCHMALENBERGER A, O’SULLIVAN O, GAHAN J, et al. Bacterial communities established in bauxite residues with different restoration histories [J]. Environmental Science & Technology, 2013, 47(13): 7110–7119. DOI: https://doi.org/10.1021/es401124w.

    Article  Google Scholar 

  22. DONG Meng-yang, HU Shu-xiang, LV Shi-quan, et al. Recovery of microbial community in strongly alkaline bauxite residues after amending biomass residue [J]. Ecotoxicology and Environmental Safety, 2022, 232: 113281. DOI: https://doi.org/10.1016/j.ecoenv.2022.113281.

    Article  Google Scholar 

  23. WU Hao, TANG Tian, ZHU Feng, et al. Long term natural restoration creates soil-like microbial communities in bauxite residue: A 50-year filed study [J]. Land Degradation & Development, 2021, 32(4): 1606–1617. DOI: https://doi.org/10.1002/ldr.3728.

    Article  Google Scholar 

  24. CHEN Xiao-dong, WU Jing-gui, OPOKU-KWANOWAA Y. Effects of returning granular corn straw on soil humus composition and humic acid structure characteristics in saline-alkali soil [J]. Sustainability, 2020, 12(3): 1005. DOI: https://doi.org/10.3390/su12031005.

    Article  Google Scholar 

  25. BAI Ling, DENG Yun, LI Jing, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting [J]. Bioresource Technology, 2020, 307: 122941. DOI: https://doi.org/10.1016/j.biortech.2020.122941.

    Article  Google Scholar 

  26. PAUL E A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization [J]. Soil Biology and Biochemistry, 2016, 98: 109–126. DOI: https://doi.org/10.1016/j.soilbio.2016.04.001.

    Article  Google Scholar 

  27. SANTINI T C, MALCOLM L I, TYSON G W, et al. pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue [J]. Environmental Science & Technology, 2016, 50(20): 11164–11173. DOI: https://doi.org/10.1021/acs.est.6b01973.

    Article  Google Scholar 

  28. LUO Ling, MENG Han, GU Ji-dong. Microbial extracellular enzymes in biogeochemical cycling of ecosystems [J]. Journal of Environmental Management, 2017, 197: 539–549. DOI: https://doi.org/10.1016/j.jenvman.2017.04.023.

    Article  Google Scholar 

  29. LIU Bo, XIA Hao, JIANG Cun-cang, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China [J]. Science of the Total Environment, 2022, 841: 156608. DOI: https://doi.org/10.1016/j.scitotenv.2022.156608.

    Article  Google Scholar 

  30. SINGH K. Microbial and enzyme activities of saline and sodic soils [J]. Land Degradation & Development, 2016, 27(3): 706–718. DOI: https://doi.org/10.1002/ldr.2385.

    Article  Google Scholar 

  31. BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560: 233–237. DOI: https://doi.org/10.1038/s41586-018-0386-6.

    Article  Google Scholar 

  32. WU Hao, SUN Wei, ZHU Feng, et al. Straw addition increases enzyme activities and microbial carbon metabolism activities in bauxite residue [J]. Journal of Environmental Sciences, 2024, 135: 332–344. DOI: https://doi.org/10.1016/j.jes.2022.11.021.

    Article  Google Scholar 

  33. WU Hao, CHEN Li, ZHU Feng, et al. The dynamic development of bacterial community following long-term weathering of bauxite residue [J]. Journal of Environmental Sciences, 2020, 90: 321–330. DOI: https://doi.org/10.1016/j.jes.2019.12.001.

    Article  Google Scholar 

  34. ANTONY C P, KUMARESAN D, HUNGER S, et al. Microbiology of Lonar Lake and other soda lakes [J]. The ISME Journal, 2013, 7(3): 468–476. DOI: https://doi.org/10.1038/ismej.2012.137.

    Article  Google Scholar 

  35. SMOLYANYUK E V, BILANENKO E N. Communities of halotolerant micromycetes from the areas of natural salinity [J]. Microbiology, 2011, 80(6): 877–883. DOI: https://doi.org/10.1134/S002626171106021X.

    Article  Google Scholar 

  36. GUO Teng-fei, ZHANG Qian, SONG Da-li, et al. Varying microbial utilization of straw-derived carbon with different long-term fertilization regimes explored by DNA stable-isotope probing [J]. European Journal of Soil Biology, 2022, 108: 103379. DOI: https://doi.org/10.1016/j.ejsobi.2021.103379.

    Article  Google Scholar 

  37. ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology, 2009, 75(6): 1589–1596. DOI: https://doi.org/10.1128/AEM.02775-08.

    Article  Google Scholar 

  38. CARSON J K, ROONEY D, GLEESON D B, et al. Altering the mineral composition of soil causes a shift in microbial community structure [J]. FEMS Microbiology Ecology, 2007, 61(3): 414–423. DOI: https://doi.org/10.1111/j.1574-6941.2007.00361.x.

    Article  Google Scholar 

  39. CHAO Yuan-qing, LIU Wen-shen, CHEN Yan-mei, et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine [J]. Environmental Science & Technology, 2016, 50(21): 11481–11490. DOI: https://doi.org/10.1021/acs.est.6b02284.

    Article  Google Scholar 

  40. SPAIN A M, KRUMHOLZ L R, ELSHAHED M S. Abundance, composition, diversity and novelty of soil Proteobacteria [J]. The ISME Journal, 2009, 3(8): 992–1000. DOI: https://doi.org/10.1038/ismej.2009.43.

    Article  Google Scholar 

  41. HOZZEIN W N, ABUELSOUD W, WADAAN M A M, et al. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals [J]. Science of the Total Environment, 2019, 651: 2787–2798. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.048.

    Article  Google Scholar 

  42. HEMATI A, ALIASGHARZAD N, KHAKVAR R, et al. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production [J]. Waste Management, 2021, 119: 122–134. DOI: https://doi.org/10.1016/j.wasman.2020.09.042.

    Article  Google Scholar 

  43. DING Ying, WEI Jiao-jiao, XIONG Jun-sheng, et al. Effects of operating parameters on in situ NH3 emission control during kitchen waste composting and correlation analysis of the related microbial communities [J]. Environmental Science and Pollution Research, 2019, 26(12): 11756–11766. DOI: https://doi.org/10.1007/s11356-019-04605-4.

    Article  Google Scholar 

  44. LINDSTRÖM K, MOUSAVI S A. Effectiveness of nitrogen fixation in rhizobia [J]. Microbial Biotechnology, 2020, 13(5): 1314–1335. DOI: https://doi.org/10.1111/1751-7915.13517.

    Article  Google Scholar 

  45. LÓPEZ-GONZÁLEZ J A, DEL CARMEN VARGASGARCÍA M, LÓPEZ M J, et al. Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting [J]. Bioresource Technology, 2015, 187: 305–313. DOI: https://doi.org/10.1016/j.biortech.2015.03.124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WU Hao conducted the literature review and wrote the manuscript. ZHU Xuan-zhi determined the main physiochemical index. HUANG Shi-wei validated the proposed method with practical experiments. JIANG Jun and ZHU Feng reviewed the manuscript. YANG Xing-wang and RONAN Courtney edited the manuscript. XUE Sheng-guo, TANG Chong-jian and SUN Wei developed the overarching research goals.

Corresponding authors

Correspondence to Jun Jiang  (江钧) or Sheng-guo Xue  (薛生国).

Ethics declarations

WU Hao, ZHU Xuan-zhi, TANG Chong-jian, HUANG Shi-wei, SUN Wei, JIANG Jun, ZHU Feng, YANG Xing-wang, RONAN Courtney, XUE Sheng-guo declare that they have no conflict of interest.

Additional information

Foundation item: Project(42030711) supported by the Key Project of National Natural Science Foundation of China; Project(42177391) supported by the National Natural Science Foundation of China

Supplementary materials

http://qr.csupress.com.cn/Public/ResourceList/Detail/50704 Please scan the QR code or visit the URL link to get the supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhu, Xz., Tang, Cj. et al. Variation of humic carbon and microbial communities in bauxite residue following co-application of straw and phosphogypsum. J. Cent. South Univ. 31, 460–476 (2024). https://doi.org/10.1007/s11771-024-5570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5570-2

Key words

关键词

Navigation