Skip to main content
Log in

Superoxide dismutase in Arabidopsis and Chlamydomonas: diversity, localization, regulation, and role

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Superoxide dismutase (SOD) is an essential enzyme that protects cells from oxidative stress and maintains redox balance. Many studies have explored the role of SOD in various genotypes of algae and plants, but a comprehensive review of the current literature is still lacking.

Aims

This review investigates the different SOD isoforms and their roles in adapting and surviving under stressful environmental conditions. We focus on two model organisms: the higher plant Arabidopsis and the unicellular green alga Chlamydomonas. We show that different plant and algal genotypes have unique SOD classes with different metal cofactors, such as Cu/Zn, Mn, and Fe, that help them deal with specific stress conditions. The activity of each SOD class depends on the availability of these metals in the cells. Moreover, we discuss how alternative splicing, RNA-binding proteins, microRNAs, and DNA methylation can influence the expression of SOD genes and highlight the gaps in our knowledge of their mechanisms.

Conclusions

We suggest that future studies should explore the genes related to Ni-SOD, examine their potential transfer into algae and legumes, and consider the consequences of SOD overactivity in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Review. None.

References

  • Acharya A, Pesacreta TC (2022) Localization of seed-derived and externally supplied nutrients in peanut seedling root. Theor Exp Plant Physiol 34:37–51

  • Ahmad R, Alsahli AA, Alansi S, Altaf MA (2023) Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic efficiency and antioxidant defense system of pea (Pisum sativum L.). Sci Hortic 322:112431

    Article  CAS  Google Scholar 

  • Aksmann A, Tukaj Z (2004) The effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on on the PAR irradiance and CO2 level. Arch Environ Contam Toxicol 47(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Allen MD et al (2007) Manganese deficiency in Chlamydomonas results in loss of photosystem II and Mn-SOD function, sensitivity to peroxides, and secondary phosphorus and Iron deficiency. Plant Physiol 143(1):263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alscher RG et al (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Ameri M et al (2020) Aluminium triggers oxidative stress and antioxidant response in the microalgae Scenedesmus sp. J Plant Physiol 246-247:153114

    Article  CAS  PubMed  Google Scholar 

  • Araz O et al (2022) Low-temperature modified DNA methylation level, genome template stability, enzyme activity, and proline content in pepper (Capsicum annuum L.) genotypes. Sci Hortic 294:110761

    Article  CAS  Google Scholar 

  • Baek Y et al (2022) Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol 5(1):1085

  • Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43(25):8038–8047

    Article  CAS  PubMed  Google Scholar 

  • Bergman B et al (2013) Trichodesmium– a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 37(3):286–302

    Article  CAS  PubMed  Google Scholar 

  • Berwal M, Ram C (2018) Superoxide dismutase: a stable biochemical marker for abiotic stress tolerance in higher plants. In: De Oliveira A (ed) Abiotic and biotic stress in plants. IntechOpen, London UK

  • Bian L, Wang Y, Bai H, Li H, Zhang C, Chen J, Xu W (2021) Melatonin-ROS signal module regulates plant lateral root development. Plant Signal Behav 16(5):1901447

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2013) Iron sparing and recycling in a compartmentalized cell. Curr Opin Microbiol 16(6):677–685

    Article  CAS  PubMed  Google Scholar 

  • Bordo D et al (1994) Conserved patterns in superoxide dismutase structure. J Mol Biol 238:366–386

    Article  CAS  PubMed  Google Scholar 

  • Bowler C et al (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116

    Article  CAS  Google Scholar 

  • Chaki M, Begara-Morales JC, Barroso JB (2020) Oxidative stress in plants. Antioxidants. 9(6):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JM, Muday GK (2021) Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana. J Biol Chem 296:100222

  • Chen CC et al (2022) Nickel superoxide dismutase protects nitrogen fixation in Trichodesmium. Limnol Oceanography Lett 7(4):363–371

  • Dadasoglu E, Ekinci M, Kul R, Shams M, Turan M, Yildirim E (2021) Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Res-An Int J 44(1):41–45

  • Del Río LA, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide Dismutases: function under abiotic stress conditions. In: Gupta D, Palma J, Corpas F (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham

    Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2007) The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere 67(1):188–193

    Article  PubMed  Google Scholar 

  • Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T (2021) Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci 11:618835

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellouzi H, Oueslati S, Hessini K, Rabhi M, Abdelly C (2021) Seed-priming with H2O2 alleviates subsequent salt stress by preventing ROS production and amplifying antioxidant defense in cauliflower seeds and seedlings. Sci Hortic 288:110360

    Article  CAS  Google Scholar 

  • Faize M et al (2015) Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp Plant Physiol 27(3):215–226

  • Feng W, Hongbin W, Bing L, Jinfa W (2006) Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L.). Plant Cell Rep 24:734–742

    Article  PubMed  Google Scholar 

  • Gallie DR, Chen Z (2019) Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 14(7):e0220078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gomez BE, Salazar JA, Nicolás-Almansa M, Razi M, Rubio M, Ruiz D, Martínez-Gómez P (2020) Molecular bases of fruit quality in Prunus species: an integrated genomic, transcriptomic, and metabolic review with a breeding perspective. Int J Mol Sci 22(1):333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS et al (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394

    Article  CAS  Google Scholar 

  • Gong Z et al (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674

    Article  PubMed  Google Scholar 

  • Gonzalez B, Vera P (2019) Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. Mol Plant 12(9):1227–1242

    Article  PubMed  Google Scholar 

  • Groth M, Moissiard G, Wirtz M et al (2016) MTHFD1 controls DNA methylation in Arabidopsis. Nat Commun 7:11640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Scandalios JG (1998) Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol 117(1):217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox (y)-sensitive transcription factors. Cell Signal 14(11):879–897

    Article  CAS  PubMed  Google Scholar 

  • Harshkova D et al (2021) Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms. Aquat Toxicol 230:105698

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int J Mol Sci 22:9326. https://doi.org/10.3390/ijms22179326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS (2013) COPPER RESPONSE REGULATOR1–dependent and–independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. Plant Cell 25(9):3186–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho TY (2013) Nickel limitation of nitrogen fixation in Trichodesmium. Limnol Oceanogr 58(1):112–120

    Article  CAS  Google Scholar 

  • Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS (2006) The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Hu SH, Jinn TL (2022) Impacts of Mn, fe, and oxidative stressors on MnSOD activation by AtMTM1 and AtMTM2 in arabidopsis. Plants 11(5):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo C, He L, Yu T, Ji X, Li R, Zhu S, Zhang F, Xie H, Liu W (2022) The superoxide dismutase gene family in Nicotiana tabacum: genome-wide identification, characterization, expression profiling and functional analysis in response to heavy metal stress. Front Plant Sci 6(13):904105

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, Mubarak MS (2022) Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 62(26):7282–7300

  • Ismaiel MM, El-Ayouty YM, Loewen PC, Piercey-Normore MD (2014) Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis. J Appl Phycol 26:1649–1658

    Article  CAS  Google Scholar 

  • Ismaiel MM, Piercey-Normore MD (2023) Antioxidant enzymes of Pseudochlorella pringsheimii under two stressors: variation of SOD isoforms activity. J Plant Res 136:755–767

  • Jiang Y et al (2022) Citral induces plant systemic acquired resistance against tobacco mosaic virus and plant fungal diseases. Ind Crop Prod 183:114948

    Article  CAS  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163(3):1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanz et al (2005) The EMBL nucleotide sequence database. Nucleic Acids Res 33:D29–D33

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Kaur M, Saini KC, Ojah H, Sahoo R, Gupta K, Kumar A, Bast F (2022) Abiotic stress in algae: response, signaling and transgenic approaches. J Appl Phycol 34(4):1843–1869

    Article  Google Scholar 

  • Kidwai M et al (2020) Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep 39:1381–1393

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim HP, Hah YC, Roe JH (1996) Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur J Biochem 241(1):178–185

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Shin JH, Cho YB, Roe JH (2014) Inverse regulation of Fe-and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3′ UTR of the sodF mRNA. Nucl Acids Res 42:2003–2014

  • Kitayama K et al (1999) Subcellular localization of iron and manganese superoxide dismutase in Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 35(1):136–142

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde R-A, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118(2):637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowald A et al (2006) Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase. J Theor Biol 238(4):828–840

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonowicz G et al (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS One 13(3):e0194678

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K et al (2014) Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Sci Hortic 176:45–53

    Article  CAS  Google Scholar 

  • Liu J, Chang MC, Meng JL, Liu JY, Cheng YF, Feng CP (2020) Effect of ozone treatment on the quality and enzyme activity of Lentinus edodes during cold storage. J Food Process Preserv 44(8):e14557

    Article  CAS  Google Scholar 

  • Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant Cell Environ 29(11):2043–2054

    Article  CAS  PubMed  Google Scholar 

  • Ma D et al (2020) Effect of high temperature on the balance between photosynthetic light absorption and energy utilization in Chlorella pyrenoidosa (Chlorophyceae). J Oceanol Limnol 38(1):186–194

    Article  CAS  Google Scholar 

  • Majewska M et al (2021) Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicol Environ Saf 208:111630

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. Front Plant Sci 5:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques AT et al (2014) Expression, purification and crystallization of MnSOD from Arabidopsis thaliana. Acta Crystallographica Section F: Struct Biol Commun 70(5):669–672

    CAS  Google Scholar 

  • Melicher P, Dvořák P, Šamaj J, Takáč T (2022) Protein-protein interactions in plant antioxidant defense. Front Plant Sci 13:1035573

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez-Alvarez S, Leisinger U, Eggen RI (1999) Adaptive responses in Chlamydomonas reinhardtii. Int Microbiol 2(1):15–22

    CAS  PubMed  Google Scholar 

  • Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, Clair DS, Batinic-Haberle I (2012) Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta (BBA)-Mol Basis Dis 1822(5):794–814

    Article  CAS  Google Scholar 

  • Mishra P, Sharma P (2019) Superoxide dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. John Wiley & Sons Ltd., Newark, pp 53–88

  • Mishra P et al (2014) Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: enhancement of peroxidase activity upon monomerization. Biochimie 97:181–193

    Article  CAS  PubMed  Google Scholar 

  • Mondola P et al (2016) The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front Physiol 7:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Muleya V, Marondedze C (2020) Functional roles of RNA-binding proteins in plant signaling. Life 10(11):288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagae M, Nakata M, Takahashi Y (2008) Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiol 146(4):1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS (2012) Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell 24(6):2649–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma JM et al (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104(4):720–726

    Article  CAS  Google Scholar 

  • Pelmenschikov V, Siegbahn P (2005) Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Inorg Chem 44:3311–3320

    Article  CAS  PubMed  Google Scholar 

  • Pereyra C, Parola R, Lando AP, Rodriguez M, Martínez-Noël GMA (2023) High sugar concentration inhibits TOR signaling pathway in Arabidopsis thaliana. J Plant Growth Regul 42:4309–4323

  • Perry J et al (2010a) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta (BBA)-Proteins and Proteomics 1804(2):245–262

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010b) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta (BBA)-Mol Basis Dis 1804(2):245–262

    Article  CAS  Google Scholar 

  • Pesacreta TC, Acharya A, Hasenstein KH (2021) Endogenous nutrients are concentrated in specific tissues in the Zea mays seedling. Protoplasma 258:863–878

    Article  CAS  PubMed  Google Scholar 

  • Pokora W, Reszka J, Tukaj Z (2003) Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (Chlorophyta) species and strains grown in batch-cultures. Acta Physiol Plant 25:375–384

    Article  CAS  Google Scholar 

  • Pokora W, Dettlaff-Pokora A, Tukaj Z (2011) Expression of superoxide dismutase isoforms in Desmodesmus subspicatus cells exposed to anthropogenic contaminants. Pol J Environ Stud 20:605-610

  • Pokora W et al (2017) Changes in nitric oxide/hydrogen peroxide content and cell cycle progression: study with synchronized cultures of green alga Chlamydomonas reinhardtii. J Plant Physiol 208:84–93

    Article  CAS  PubMed  Google Scholar 

  • Pokora W et al (2022) Cross talk between hydrogen peroxide and nitric oxide in the unicellular green algae cell cycle: how does it work? Cells 11(15):2425

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhakar R, Morokuma K, Musaev DG (2006) A DFT study of the mechanism of Ni superoxide dismutase (NiSOD): role of the active site cysteine-6 residue in the oxidative half-reaction. J Comput Chem 27(12):1438–1445

    Article  CAS  PubMed  Google Scholar 

  • Prakash V, Vishwakarma K, Singh VP, Rai P, Ramawat N, Tripathi DK, Sharma S (2020) NO and ROS implications in the organization of root system architecture. Physiol Plant 168(2):473–489

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284(28):18571–18575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput V D, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10(4):267

  • Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)-Mol Basis Dis 1762(11–12):1025–1037

  • Redmond MJ, McEuen AR, Powls R (1985) Superoxide dismutase in Scenedesmus obliquus: effect of growth conditions and initial characterization. Planta 163:405–410

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H et al (1993) Isozymes of superoxide dismutase in Chlamydomonas and purification of one of the major isozymes containing Fe. Plant Cell Physiol 34(7):1133–1137

    CAS  Google Scholar 

  • Scheller HV, Haldrup A (2005) Photoinhibition of photosystem I. Planta 221:5–8

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Gill T, Zahoor I, Ahuja PS, Sreenivasulu Y, Kumar S, Singh AK (2019) Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep 46:1985–2002

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Pilon M (2019) Conserved Cu-microRNAs in Arabidopsis thaliana function in copper economy under deficiency. Plants 8(6):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams M, Khadivi A (2023) Mechanisms of salinity tolerance and their possible application in the breeding of vegetables. BMC Plant Biology 23:139

  • Shams M, Yildirim E (2021) Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress. Sci Hortic 282:110041

    Article  CAS  Google Scholar 

  • Shams M et al (2019) Growth, nutrient uptake and enzyme activity response of lettuce (Lactuca sativa L.) to excess copper. Environ Sustain 2:67–73

    Article  CAS  Google Scholar 

  • Shams M, Yildirim E, Arslan E, Agar G (2020) Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H 2 O 2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiol Plant 42:1–12

    Article  Google Scholar 

  • Shams M, Yuksel EA, Agar G, Ekinci M, Kul R, Turan M, Yildirim E (2023) Biosynthesis of capsaicinoids in pungent peppers under salinity stress. Physiol Plant 175(2):e13889

    Article  CAS  PubMed  Google Scholar 

  • Shearer J, Peck KL, Schmitt JC, Neupane KP (2014) Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction. J Am Chem Soc 136(45):16009–16022

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y (2014) Superoxide Dismutases and superoxide reductases. Chem Rev 114(7):3854–3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenker M et al (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Singh SP et al (2019) Molecular approaches in plant biology and environmental challenges. Springer

    Book  Google Scholar 

  • Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M (2020) Transcriptome analysis of ppdnmt2 and identification of superoxide dismutase as a novel interactor of DNMT2 in the moss physcomitrella patens. Front Plant Sci 11:1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Srivastava MK, Chibani K, Nilsson R, Rouhier N, Melzer M, Wingsle G (2009) Alternative splicing studies of the reactive oxygen species gene network in Populus reveal two isoforms of high-isoelectric-point superoxide dismutase. Plant Physiol 149(4):1848–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srnec M, Aquilante F, Ryde U, Rulisek L (2009) Reaction mechanism of manganese superoxide dismutase studied by combined quantum and molecular mechanical calculations and multiconfigurational methods. J Phys Chem B 113(17):6074–6086

    Article  CAS  PubMed  Google Scholar 

  • Sruthi P et al (2017) Heavy metal detoxification mechanisms in halophytes: an overview. Wetl Ecol Manag 25:129–148

    Article  CAS  Google Scholar 

  • Szőllősi R (2014) Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. Oxidative Damage Plants 3:89–129

  • Tanaka S et al (2011) Comparison of three Chlamydomonas strains which show distinctive oxidative stress tolerance. J Biosci Bioeng 112(5):462–468

    Article  CAS  PubMed  Google Scholar 

  • Tian YM, Li XM, Zhou XY, Qu ZP, Wang X, Dong SK (2023) Effects of drought stress on sod activity and pro content in different parts of soybean leaves. Legume Res 46:995–1000

  • Timari S, Cerea R, Várnagy K (2011) Characterization of CuZnSOD model complexes from a redox point of view: Redox properties of copper(II) complexes of imidazole containing ligands. J Inorgan Biochem 105:1009–1017

  • Tukaj Z, Aksmann A (2007) Toxic effects of anthraquinone and phenanthrenequinone upon Scenedesmus strains (green algae) at low and elevated concentration of CO2. Chemosphere 66(3):480–487

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Singh SP, Upadhyay SK (2019) Role of superoxide dismutases (SODs) in stress tolerance in plants. In: Singh S, Upadhyay S, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Energy, environment, and sustainability. Springer, Singapore, pp 51–77

  • Uudsemaa M, Tamm T (2003) Density-functional theory calculations of aqueous redox potentials of fourth-period transition metals. J Phys Chem A 107(46):9997–10003

    Article  CAS  Google Scholar 

  • Vighi IL, Benitez LC, Amaral MN, Moraes GP, Auler PA, Rodrigues GS, Braga EJB (2017) Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol Plant 61(3):540–550

  • Vishnevetsky J, White TL, Palmateer AJ et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72

  • Wakao S, Niyogi KK (2021) Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. Plant Physiol 187(2):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xia MX, Chen J, Yuan R, Deng FN, Shen FF (2016) Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochem Mosc 81:465–480

    Article  CAS  Google Scholar 

  • Wang Y et al (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe-Simon F et al (2005) The role and evolution of superoxide dismutases in algae 1. J Phycol 41(3):453–465

    Article  CAS  Google Scholar 

  • Xing Y, Chen WH, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66(19):5971–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang F, Ma Y, Dang H, Hu X (2022) Transcription factor SlAREB1 is involved in the antioxidant regulation under saline–alkaline stress in tomato. Antioxidants 11(9):1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R (2012) Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS One 7(4):e35084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagci S, Yildirim E, Yildirim N, Shams M, Agar G (2019) Nitric oxide alleviates the effects of copper-induced DNA methylation, genomic instability, LTR retrotransposon polymorphism and enzyme activity in lettuce. Plant Physiol Rep 24:289–295

    Article  CAS  Google Scholar 

  • Yamasaki H et al (2008) How do plants respond to copper deficiency? Plant Signal Behav 3(4):231–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Yavari N et al (2021) The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS One 16(3):e0247380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zameer R, Fatima K, Azeem F, HIM AL, Sadaqat M, Rasheed A, Batool R, Shah AN, Zaynab M, Shah AA, Attia KA, MDF AK, Fiaz S (2022) Genome-wide characterization of superoxide dismutase (SOD) genes in Daucus carota: novel insights into structure, expression, and binding interaction with hydrogen peroxide (H2O2) under abiotic stress condition. Front Plant Sci 13:870241

  • Zbigniew T, Wojciech P (2006) Individual and combined effect of anthracene, cadmium, and chloridazone on growth and activity of SOD izoformes in three Scenedesmus species. Ecotoxicol Environ Saf 65(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Zhou G et al (2022) Molecular evolution and functional divergence of stress-responsive Cu/Zn superoxide dismutases in plants. Int J Mol Sci 23(13):7082

  • Zhu Y, Yan J, Liu W, Liu L, Sheng Y, Sun Y et al (2016) Phosphorylation of a NAC transcription factor by a calcium/calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171(3):1651–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2021) Roles of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis model. Front Plant Sci 12:683228

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to Stanislaw Pokora for his assistance in preparing Fig 2.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MS wrote the manuscript. AA, AK, and WP collaborated in the writing and editing of the manuscript.

Corresponding authors

Correspondence to Mostafakamal Shams or Ali Khadivi.

Ethics declarations

Ethics approval and consent to participate

None.

Consent for publication

None.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Yongchao Liang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, M., Pokora, W., Khadivi, A. et al. Superoxide dismutase in Arabidopsis and Chlamydomonas: diversity, localization, regulation, and role. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06618-6

Keywords

Navigation