Skip to main content

Advertisement

Log in

The Contributions of Thrombospondin-1 to Epilepsy Formation

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aronica E, Mühlebner A. Neuropathology of epilepsy. Handb Clin Neurol 2017, 145: 193–216.

    Article  PubMed  Google Scholar 

  2. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019, 393: 689–701.

    Article  PubMed  Google Scholar 

  3. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet 2006, 367: 1087–1100.

    Article  PubMed  Google Scholar 

  4. Tian N, Boring M, Kobau R, Zack MM, Croft JB. Active epilepsy and seizure control in adults - United States, 2013 and 2015. MMWR Morb Mortal Wkly Rep 2018, 67: 437–442.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mendus D, Rankin-Gee EK, Mustapha M, Porter BE. Increased sensitivity to kindling in mice lacking TSP1. Neuroscience 2015, 305: 302–308.

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction. Nat Rev Neurosci 2013, 14: 337–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Codazzi F, Pelizzoni I, Zacchetti D, Grohovaz F. Iron entry in neurons and astrocytes: A link with synaptic activity. Front Mol Neurosci 2015, 8: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 2001, 291: 657–661.

    Article  CAS  PubMed  Google Scholar 

  9. Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019, 17: 374–383.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cheng C, Lau SKM, Doering LC. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Mol Brain 2016, 9: 74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005, 120: 421–433.

    Article  CAS  PubMed  Google Scholar 

  12. Baldwin KT, Eroglu C. Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 2017, 45: 113–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hennekinne L, Colasse S, Triller A, Renner M. Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J Neurosci 2013, 33: 11432–11439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun H, Ma L, Zhang Y, Pan X, Wang C, Zhang J, et al. A purinergic P2 receptor family-mediated increase in thrombospondin-1 bolsters synaptic density and epileptic seizure activity in the amygdala-kindling rat model. Front Cell Neurosci 2018, 12: 302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, et al. Role of elevated thrombospondin-1 in kainic acid-induced status epilepticus. Neurosci Bull 2020, 36: 263–276.

    Article  CAS  PubMed  Google Scholar 

  16. Torres MD, Garcia O, Tang C, Busciglio J. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol Med 2018, 114: 10–14.

    Article  CAS  PubMed  Google Scholar 

  17. Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012, 31: 170–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Zhu W, Yu H, Yu J, Zhang M, Pan X, et al. P2Y4/TSP-1/TGF-β1/pSmad2/3 pathway contributes to acute generalized seizures induced by kainic acid. Brain Res Bull 2019, 149: 106–119.

    Article  CAS  PubMed  Google Scholar 

  19. Nishitsuji K, Ikezaki M, Manabe S, Uchimura K, Ito Y, Ihara Y. Thrombospondin type 1 repeat-derived C-mannosylated peptide attenuates synaptogenesis of cortical neurons induced by primary astrocytes via TGF-Β. Glycoconj J 2022, 39: 701–710.

    Article  CAS  PubMed  Google Scholar 

  20. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 2005, 25: 1557–1572.

    Article  CAS  PubMed  Google Scholar 

  21. Pototskiy E, Dellinger JR, Bumgarner S, Patel J, Sherrerd-Smith W, Musto AE. Brain injuries can set up an epileptogenic neuronal network. Neurosci Biobehav Rev 2021, 129: 351–366.

    Article  PubMed  Google Scholar 

  22. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation 2018, 15: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Geronzi U, Lotti F, Grosso S. Oxidative stress in epilepsy. Expert Rev Neurother 2018, 18: 427–434.

    Article  CAS  PubMed  Google Scholar 

  24. Badawy RAB, Freestone DR, Lai A, Cook MJ. Epilepsy: Ever-changing states of cortical excitability. Neuroscience 2012, 222: 89–99.

    Article  CAS  PubMed  Google Scholar 

  25. Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget 2017, 8: 84546–84558.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schöllhorn L, Bock F, Cursiefen C. Thrombospondin-1 as a regulator of corneal inflammation and lymphangiogenesis: Effects on dry eye disease and corneal graft immunology. J Ocul Pharmacol Ther 2015, 31: 376–385.

    Article  PubMed  Google Scholar 

  27. Baenziger NL, Brodie GN, Majerus PW. A thrombin-sensitive protein of human platelet membranes. Proc Natl Acad Sci U S A 1971, 68: 240–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kayser H, Mann K, Machaidze G, Nimtz M, Ringler P, Müller SA, et al. Isolation, characterisation and molecular imaging of a high-molecular-weight insect biliprotein, a member of the hexameric arylphorin protein family. J Mol Biol 2009, 389: 74–89.

    Article  CAS  PubMed  Google Scholar 

  29. Liu YS, Yang M. The effect of 5-hydroxtryptamine on the regulation of megakaryocytopoiesis. Hematology 2006, 11: 53–56.

    Article  PubMed  Google Scholar 

  30. Adams JC. Thrombospondin-1. Int J Biochem Cell Biol 1997, 29: 861–865.

    Article  CAS  PubMed  Google Scholar 

  31. Carlson CB, Lawler J, Mosher DF. Structures of thrombospondins. Cell Mol Life Sci 2008, 65: 672–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams JC, Lawler J. The thrombospondins. Cold Spring Harb Perspect Biol 2011, 3: a009712.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin-1 and thrombospondin-2 in cardiovascular diseases (Review). Int J Mol Med 2020, 45: 1275–1293.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Duquette M, Nadler M, Okuhara D, Thompson J, Shuttleworth T, Lawler J. Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity. Matrix Biol 2014, 37: 15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sims JN, Lawler J. Thrombospondin-1-based antiangiogenic therapy. J Ocul Pharmacol Ther 2015, 31: 366–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaur S, Roberts DD. Why do humans need thrombospondin-1? J Cell Commun Signal 2023, 17: 485–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang X, Lawler J. Thrombospondin-based antiangiogenic therapy. Microvasc Res 2007, 74: 90–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014, 37: 83–91.

    Article  CAS  PubMed  Google Scholar 

  39. Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 1993, 123: 485–496.

    Article  CAS  PubMed  Google Scholar 

  40. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 2018, 100: 120-134.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDonald JF, Dimitry JM, Frazier WA. An amyloid-like C-terminal domain of thrombospondin-1 displays CD47 agonist activity requiring both VVM motifs. Biochemistry 2003, 42: 10001–10011.

    Article  CAS  PubMed  Google Scholar 

  42. Gheibihayat SM, Cabezas R, Nikiforov NG, Jamialahmadi T, Johnston TP, Sahebkar A. CD47 in the brain and neurodegeneration: An update on the role in neuroinflammatory pathways. Molecules 2021, 26: 3943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanase C, Enciu AM, Codrici E, Popescu ID, Dudau M, Dobri AM, et al. Fatty acids, CD36, thrombospondin-1, and CD47 in glioblastoma: Together and/or separately? Int J Mol Sci 2022, 23: 604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simantov R, Febbraio M, Crombie R, Asch AS, Nachman RL, Silverstein RL. Histidine-rich glycoprotein inhibits the antiangiogenic effect of thrombospondin-1. J Clin Invest 2001, 107: 45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of thrombospondin-1 in the tumor microenvironment. Int J Mol Sci 2021, 22: 4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bongrazio M, Da Silva-Azevedo L, Bergmann EC, Baum O, Hinz B, Pries AR, et al. Shear stress modulates the expression of thrombospondin-1 and CD36 in endothelial cells in vitro and during shear stress-induced angiogenesis in vivo. Int J Immunopathol Pharmacol 2006, 19: 35–48.

    Article  CAS  PubMed  Google Scholar 

  47. Ortiz-Masià D, Díez I, Calatayud S, Hernández C, Cosín-Roger J, Hinojosa J, et al. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLoS One 2012, 7: e48535.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zong P, Feng J, Li CX, Jellison ER, Yue Z, Miller B, et al. Activation of endothelial TRPM2 exacerbates blood-brain barrier degradation in ischemic stroke. Cardiovasc Res 2024, 120: 188–202.

    Google Scholar 

  49. Ma Y, Halade GV, Lindsey ML. Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res 2012, 5: 848–857.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Chen W, Liu W, Wu J, Shao Y, Zhang X. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat. J Clin Neurosci 2009, 16: 818–821.

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Xiao N, Xia J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 2010, 13: 22–24.

    Article  CAS  PubMed  Google Scholar 

  52. Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 2011, 7: 1056–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greenaway J, Lawler J, Moorehead R, Bornstein P, Lamarre J, Petrik J. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol 2007, 210: 807–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Diaz A, Yepes M. Urokinase-type plasminogen activator promotes synaptic repair in the ischemic brain. Neural Regen Res 2018, 13: 232–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol. 2023, 14: 1166189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Ozkan E, et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139: 380–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature 2010, 468: 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol 2008, 86: 342–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oyasu M, Kuroda S, Nakashita M, Fujimiya M, Kikkawa U, Saito N. Immunocytochemical localization of a neuron-specific thrombospondin-1-like protein, NELL2: Light and electron microscopic studies in the rat brain. Brain Res Mol Brain Res 2000, 76: 151–160.

    Article  CAS  PubMed  Google Scholar 

  60. Danjo Y, Shigetomi E, Hirayama YJ, Kobayashi K, Ishikawa T, Fukazawa Y, et al. Transient astrocytic mGluR5 expression drives synaptic plasticity and subsequent chronic pain in mice. J Exp Med 2022, 219: e20210989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tagnaouti N, Loebrich S, Heisler F, Pechmann Y, Fehr S, De Arcangelis A, et al. Neuronal expression of muskelin in the rodent central nervous system. BMC Neurosci 2007, 8: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Scott-Drew S, ffrench-Constant C. Expression and function of thrombospondin-1 in myelinating glial cells of the central nervous system. J Neurosci Res 1997, 50: 202–214.

    Article  CAS  PubMed  Google Scholar 

  63. Cheng C, Yu Z, Zhao S, Liao Z, Xing C, Jiang Y, et al. Thrombospondin-1 gene deficiency worsens the neurological outcomes of traumatic brain injury in mice. Int J Med Sci 2017, 14: 927–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin C, Wang K, Zhang L, Bai L. Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal Model Exp Med 2022, 5: 15–26.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sher AA, Glover KKM, Coombs KM. Zika virus infection disrupts astrocytic proteins involved in synapse control and axon guidance. Front Microbiol 2019, 10: 596.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS One 2010, 5: e14200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang B, Zou L, Li M, Zhou L. Astrocyte: A foe or a friend in intellectual disability-related diseases. Front Synaptic Neurosci 2022, 14: 877928.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yu K, Ge J, Summers JB, Li F, Liu X, Ma P, et al. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One 2008, 3: e2470.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 2012, 287: 41432–41445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tran MD, Furones-Alonso O, Sanchez-Molano J, Bramlett HM. Trauma-induced expression of astrocytic thrombospondin-1 is regulated by P2 receptors coupled to protein kinase cascades. Neuroreport 2012, 23: 721–726.

    Article  CAS  PubMed  Google Scholar 

  71. Lin Z, Gu Y, Zhou R, Wang M, Guo Y, Chen Y, et al. Serum exosomal proteins F9 and TSP-1 as potential diagnostic biomarkers for newly diagnosed epilepsy. Front Neurosci 2020, 14: 737.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang B, Guo W, Huang Y. Thrombospondins and synaptogenesis. Neural Regen Res 2012, 7: 1737–1743.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagai J, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 2019, 177: 1280-1292.e20.

    Article  Google Scholar 

  74. Min-DeBartolo J, Schlerman F, Akare S, Wang J, McMahon J, Zhan Y, et al. Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH). PLoS One 2019, 14: e0226854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ungefroren H, Gieseler F, Kaufmann R, Settmacher U, Lehnert H, Rauch BH. Signaling crosstalk of TGF-β/ALK5 and PAR2/PAR1: A complex regulatory network controlling fibrosis and cancer. Int J Mol Sci 2018, 19: 1568.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kisseleva EP, Krylov AV, Stepanova OI, Lioudyno VI. Transplantable subcutaneous hepatoma 22a affects functional activity of resident tissue macrophages in periphery. Int J Cell Biol 2011, 2011: 793034.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hisaoka-Nakashima K, Yokoe T, Watanabe S, Nakamura Y, Kajitani N, Okada-Tsuchioka M, et al. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J Neurochem 2021, 158: 849–864.

    Article  CAS  PubMed  Google Scholar 

  78. Bussolati B, Assenzio B, Deregibus MC, Camussi G. The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 2006, 84: 852–863.

    Article  CAS  PubMed  Google Scholar 

  79. Pacurari M, Mitra A, Turner T. Idiopathic pulmonary comorbidities and mechanisms. Int J Inflam 2021, 2021: 3963659.

    PubMed  PubMed Central  Google Scholar 

  80. Planas-Fontánez TM, Sainato DM, Sharma I, Dreyfus CF. Roles of astrocytes in response to aging, Alzheimer’s disease and multiple sclerosis. Brain Res 2021, 1764: 147464.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin Exp Neuroimmunol 2015, 6: 245–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jo WS, Mizukami Y, Duerr EM, Zukerberg LR, Chung DC. Wnt signaling can repress thrombospondin-1 expression in colonic tumorigenesis. Cancer Biol Ther 2005, 4: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  83. Fairaq A, Goc A, Artham S, Sabbineni H, Somanath PR. TNFα induces inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-mediated thrombospondin-1 expression. Mol Cell Biochem 2015, 406: 227–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Orozco-Morales M, Avilés-Salas A, Hernández-Pedro N, Catalán R, Cruz-Rico G, Colín-González AL, et al. Clinicopathological and prognostic significance of CD47 expression in lung neuroendocrine tumors. J Immunol Res 2021, 2021: 6632249.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. Am J Physiol Renal Physiol 2008, 294: F407–F413.

    Article  CAS  PubMed  Google Scholar 

  86. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2011, 2: 492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yurdagul A Jr, Finney AC, Woolard MD, Orr AW. The arterial microenvironment: The where and why of atherosclerosis. Biochem J 2016, 473: 1281–1295.

    Article  CAS  PubMed  Google Scholar 

  88. Cho J, Huh Y. Astrocytic calcium dynamics along the pain pathway. Front Cell Neurosci 2020, 14: 594216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bogáti R, Katona É, Shemirani AH, Balogh E, Bárdos H, Jeney V, et al. The effect of activated FXIII, a transglutaminase, on vascular smooth muscle cells. Int J Mol Sci 2022, 23: 5845.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gao Z, Hu H. Star-like cells spark behavioural hyperactivity in mice. Nature 2019, 571: 43–44.

    Article  CAS  PubMed  Google Scholar 

  91. Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 1999, 274: 13586–13593.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao Y, Pu D, Sun Y, Chen J, Luo C, Wang M, et al. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res 2018, 363: 171–178.

    Article  CAS  PubMed  Google Scholar 

  93. Takeuchi K, Ariyoshi Y, Shimizu A, Okumura Y, Cara-Fuentes G, Garcia GE, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation 2021, 28: e12708.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Murphy-Ullrich JE. Thrombospondin-1 signaling through the calreticulin/LDL receptor related protein 1 axis: Functions and possible roles in glaucoma. Front Cell Dev Biol 2022, 10: 898772.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Maeda N, Maenaka K. The roles of matricellular proteins in oncogenic virus-induced cancers and their potential utilities as therapeutic targets. Int J Mol Sci 2017, 18: 2198.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jeong JK, Kim JG, Kim HR, Lee TH, Park JW, Lee BJ. A role of central NELL2 in the regulation of feeding behavior in rats. Mol Cells 2017, 40: 186–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015, 63: 2133–2151.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pascual MR. Temporal lobe epilepsy: Clinical semiology and neurophysiological studies. Semin Ultrasound CT MR 2007, 28: 416–423.

    Article  PubMed  Google Scholar 

  99. Samanta D. Epilepsy in Angelman syndrome: A scoping review. Brain Dev 2021, 43: 32–44.

    Article  CAS  PubMed  Google Scholar 

  100. Wang YH, Huang TL, Chen X, Yu SX, Li W, Chen T, et al. Glioma-derived TSP2 promotes excitatory synapse formation and results in hyperexcitability in the peritumoral cortex of glioma. J Neuropathol Exp Neurol 2021, 80: 137–149.

    Article  CAS  PubMed  Google Scholar 

  101. Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: An emergent property of a complex system. Prog Brain Res 2007, 163: 541–563.

    Article  CAS  PubMed  Google Scholar 

  102. Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA. Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 1995, 36: 543–558.

    Article  CAS  PubMed  Google Scholar 

  103. Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: A network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 2005, 93: 437–453.

    Article  PubMed  Google Scholar 

  104. Zhang W, Thamattoor AK, LeRoy C, Buckmaster PS. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy. Hippocampus 2015, 25: 594–604.

    Article  CAS  PubMed  Google Scholar 

  105. Puhahn-Schmeiser B, Leicht K, Gessler F, Freiman TM. Aberrant hippocampal mossy fibers in temporal lobe epilepsy target excitatory and inhibitory neurons. Epilepsia 2021, 62: 2539–2550.

    Article  CAS  PubMed  Google Scholar 

  106. Ishibashi M, Egawa K, Fukuda A. Diverse actions of astrocytes in GABAergic signaling. Int J Mol Sci 2019, 20: 2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fujimura M, Usuki F, Nakamura A. Methylmercury induces hyperalgesia/allodynia through spinal cord dorsal horn neuronal activation and subsequent somatosensory cortical circuit formation in rats. Arch Toxicol 2021, 95: 2151–2162.

    Article  CAS  PubMed  Google Scholar 

  108. Wu Q, Finley SD. Mathematical model predicts effective strategies to inhibit VEGF-eNOS signaling. J Clin Med 2020, 9: 1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002, 6: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van Eekelen M, Sasportas LS, Kasmieh R, Yip S, Figueiredo JL, Louis DN, et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010, 29: 3185–3195.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jeanne A, Sick E, Devy J, Floquet N, Belloy N, Theret L, et al. Identification of TAX2 peptide as a new unpredicted anti-cancer agent. Oncotarget 2015, 6: 17981–18000.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fernando KHN, Yang HW, Jiang Y, Jeon YJ, Ryu B. Ishige okamurae extract and its constituent ishophloroglucin A attenuated in vitro and in vivo high glucose-induced angiogenesis. Int J Mol Sci 2019, 20: 5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walewska E, Wołodko K, Skarzynski D, Ferreira-Dias G, Galvão A. The interaction between nodal, hypoxia-inducible factor 1 alpha, and thrombospondin 1 promotes luteolysis in equine corpus luteum. Front Endocrinol 2019, 10: 667.

    Article  Google Scholar 

  114. Miyata Y, Sakai H. Thrombospondin-1 in urological cancer: Pathological role, clinical significance, and therapeutic prospects. Int J Mol Sci 2013, 14: 12249–12272.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Yang W, Zhao D, Han Y, Liu B, Zhao H, et al. Correlation between TSP-1, TGF-β and PPAR-γ expression levels and glioma microvascular density. Oncol Lett 2014, 7: 95–100.

    Article  PubMed  Google Scholar 

  116. Gustavsson H, Tesan T, Jennbacken K, Kuno K, Damber JE, Welén K. ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNCaP-19 prostate tumors. BMC Cancer 2010, 10: 288.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Staniszewska I, Zaveri S, Del Valle L, Oliva I, Rothman VL, Croul SE, et al. Interaction of alpha9beta1 integrin with thrombospondin-1 promotes angiogenesis. Circ Res 2007, 100: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  118. Yang AL, Zhou HJ, Lin Y, Luo JK, Cui HJ, Tang T, et al. Thrombin promotes the expression of thrombospondin-1 and-2 in a rat model of intracerebral hemorrhage. J Neurol Sci 2012, 323: 141–146.

    Article  CAS  PubMed  Google Scholar 

  119. Feng N, Wang Z, Zhang Z, He X, Wang C, Zhang L. MiR-487b promotes human umbilical vein endothelial cell proliferation, migration, invasion and tube formation through regulating THBS1. Neurosci Lett 2015, 591: 1–7.

    Article  CAS  PubMed  Google Scholar 

  120. Soltani A, Walters EH, Reid DW, Shukla SD, Nowrin K, Ward C, et al. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2016, 11: 2359–2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Uchida H, Kuroki M, Shitama T, Hayashi H, Kuroki M. Activation of TGF-beta1 through up-regulation of TSP-1 by retinoic acid in retinal pigment epithelial cells. Curr Eye Res 2008, 33: 199–203.

    Article  CAS  PubMed  Google Scholar 

  122. Morandi V. The N-terminal domain of thrombospondin-1: A key for the dual effect of TSP-1 in angiogenesis and cancer progression? Sci World J 2009, 9: 133–136.

    Article  CAS  Google Scholar 

  123. Prangsaengtong O, Park JY, Inujima A, Igarashi Y, Shibahara N, Koizumi K. Enhancement of lymphangiogenesis in vitro via the regulations of HIF-1α expression and nuclear translocation by deoxyshikonin. Evid Based Complement Alternat Med 2013, 2013: 148297.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ghorbanzadeh V, Pourheydar B, Dariushnejad H, Ghalibafsabbaghi A, Chodari L. Curcumin improves angiogenesis in the heart of aged rats: Involvement of TSP1/NF-κB/VEGF-A signaling. Microvasc Res 2022, 139: 104258.

    Article  CAS  PubMed  Google Scholar 

  125. Chong HC, Tan CK, Huang RL, Tan NS. Matricellular proteins: A sticky affair with cancers. J Oncol 2012, 2012: 351089.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li S, Dong J, Ta G, Liu Y, Cui J, Li X, et al. Xuan Bi Tong yu Fang promotes angiogenesis via VEGF-Notch1/Dll4 pathway in myocardial ischemic rats. Evid Based Complement Alternat Med 2020, 2020: 5041629.

    PubMed  PubMed Central  Google Scholar 

  127. Baulac M. MTLE with hippocampal sclerosis in adult as a syndrome. Rev Neurol 2015, 171: 259–266.

    Article  CAS  PubMed  Google Scholar 

  128. Morin-Brureau M, Rigau V, Lerner-Natoli M. Why and how to target angiogenesis in focal epilepsies. Epilepsia 2012, 53: 64–68.

    Article  CAS  PubMed  Google Scholar 

  129. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 2007, 130: 1942–1956.

    Article  PubMed  Google Scholar 

  130. Castro-Torres RD, Ureña-Guerrero ME, Morales-Chacón LM, Lorigados-Pedre L, Estupiñan-Díaz B, Rocha L, et al. New aspects of VEGF, GABA, and glutamate signaling in the neocortex of human temporal lobe pharmacoresistant epilepsy revealed by RT-qPCR arrays. J Mol Neurosci 2020, 70: 916–929.

    Article  CAS  PubMed  Google Scholar 

  131. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012, 33: 116–125.

    Article  CAS  PubMed  Google Scholar 

  132. Castañeda-Cabral JL, Colunga-Durán A, Ureña-Guerrero ME, Beas-Zárate C, Nuñez-Lumbreras MLA, Orozco-Suárez S, et al. Expression of VEGF- and tight junction-related proteins in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy. Microvasc Res 2020, 132: 104059.

    Article  PubMed  Google Scholar 

  133. Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci 2018, 38: 4301–4315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Löscher W, Friedman A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: A cause, consequence, or both? Int J Mol Sci 2020, 21: 591.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Han H, Mann A, Ekstein D, Eyal S. Breaking bad: The structure and function of the blood-brain barrier in epilepsy. AAPS J 2017, 19: 973–988.

    Article  CAS  PubMed  Google Scholar 

  136. Häussinger D, Görg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr Opin Clin Nutr Metab Care 2010, 13: 87–92.

    Article  PubMed  Google Scholar 

  137. Ning M, Sarracino DA, Kho AT, Guo S, Lee SR, Krastins B, et al. Proteomic temporal profile of human brain endothelium after oxidative stress. Stroke 2011, 42: 37–43.

    Article  CAS  PubMed  Google Scholar 

  138. Gao JB, Tang WD, Wang HX, Xu Y. Predictive value of thrombospondin-1 for outcomes in patients with acute ischemic stroke. Clin Chim Acta 2015, 450: 176–180.

    Article  CAS  PubMed  Google Scholar 

  139. Sun AY, Chen YM. Oxidative stress and neurodegenerative disorders. J Biomed Sci 1998, 5: 401–414.

    Article  CAS  PubMed  Google Scholar 

  140. Ruhela D, Bhopale VM, Kalakonda S, Thom SR. Astrocyte-derived microparticles initiate a neuroinflammatory cycle due to carbon monoxide poisoning. Brain Behav Immun Health 2021, 18: 100398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kang S, Byun J, Son SM, Mook-Jung I. Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells. Cell Death Discov 2018, 4: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 2010, 88: 23–45.

    Article  CAS  PubMed  Google Scholar 

  143. Frantseva MV, Velazquez JL, Hwang PA, Carlen PL. Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci 2000, 12: 1431–1439.

    Article  CAS  PubMed  Google Scholar 

  144. Yang N, Guan QW, Chen FH, Xia QX, Yin XX, Zhou HH, et al. Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxid Med Cell Longev 2020, 2020: 6687185.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015, 2015: 745613.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biol 2020, 36: 101606.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Souza MA, Mota BC, Gerbatin RR, Rodrigues FS, Castro M, Fighera MR, et al. Antioxidant activity elicited by low dose of caffeine attenuates pentylenetetrazol-induced seizures and oxidative damage in rats. Neurochem Int 2013, 62: 821–830.

    Article  CAS  PubMed  Google Scholar 

  148. Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 2015, 75: 151–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shekh-Ahmad T, Lieb A, Kovac S, Gola L, Christian Wigley W, Abramov AY, et al. Combination antioxidant therapy prevents epileptogenesis and modifies chronic epilepsy. Redox Biol 2019, 26: 101278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019, 2019: 2105607.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mittal R, Gonzalez-Gomez I, Prasadarao NV. Escherichia coli K1 promotes the ligation of CD47 with thrombospondin-1 to prevent the maturation of dendritic cells in the pathogenesis of neonatal meningitis. J Immunol 2010, 185: 2998–3006.

    Article  CAS  PubMed  Google Scholar 

  152. Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ, Frazier WA. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 1996, 271: 21–24.

    Article  CAS  PubMed  Google Scholar 

  153. Bornstein P. Thrombospondins: Structure and regulation of expression. FASEB J 1992, 6: 3290–3299.

    Article  CAS  PubMed  Google Scholar 

  154. Thom SR, Bhopale VM, Bhat AR, Arya AK, Ruhela D, Qiao G, et al. Neuroinflammation with increased glymphatic flow in a murine model of decompression sickness. J Neurophysiol 2023, 129: 662–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saumet A, Slimane MB, Lanotte M, Lawler J, Dubernard V. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/alphavbeta3 in promyelocytic leukemia NB4 cells. Blood 2005, 106: 658–667.

    Article  CAS  PubMed  Google Scholar 

  156. Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, et al. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nat Commun 2019, 10: 2246.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 2006, 281: 26069–26080.

    Article  CAS  PubMed  Google Scholar 

  158. Gong L, Gu Y, Han X, Luan C, Liu C, Wang X, et al. Spatiotemporal dynamics of the molecular expression pattern and intercellular interactions in the glial scar response to spinal cord injury. Neurosci Bull 2023, 39: 213–244.

    Article  CAS  PubMed  Google Scholar 

  159. Huang L, Tang H, Sherchan P, Lenahan C, Boling W, Tang J, et al. The activation of phosphatidylserine/CD36/TGF-β1 pathway prior to surgical brain injury attenuates neuroinflammation in rats. Oxid Med Cell Longev 2020, 2020: 4921562.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Huang Y, Chen S, Luo Y, Han Z. Crosstalk between inflammation and the BBB in stroke. Curr Neuropharmacol 2020, 18: 1227–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gao L, Peng L, Sherchan P, Tang H, Liu Y, Xiao J, et al. Inhibition of lysophosphatidic acid receptor 1 relieves PMN recruitment in CNS via LPA1/TSP1/CXCR2 pathway and alleviates disruption on blood-brain barrier following intracerebral haemorrhage in mice. Fluids Barriers CNS 2023, 20: 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 2017, 29: 1–16.

    Article  PubMed  Google Scholar 

  163. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23: 8692–8700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J 2008, 49: 1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Musto AE, Gjorstrup P, Bazan NG. The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia 2011, 52: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  166. Musto AE, Rosencrans RF, Walker CP, Bhattacharjee S, Raulji CM, Belayev L, et al. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci Rep 2016, 6: 30298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hong Z, Chen H, Hong H, Lin L, Wang Z. TSP-1 expression changes in diabetic rats with spinal cord injury. Neurol Res 2009, 31: 878–882.

    Article  CAS  PubMed  Google Scholar 

  168. Lin TN, Kim GM, Chen JJ, Cheung WM, He YY, Hsu CY. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 2003, 34: 177–186.

    Article  CAS  PubMed  Google Scholar 

  169. Bornstein P, Agah A, Kyriakides TR. The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol 2004, 36: 1115–1125.

    Article  CAS  PubMed  Google Scholar 

  170. Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J Neurotrauma 2007, 24: 492–507.

    Article  PubMed  Google Scholar 

  171. Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and spinal cord injury: Infiltrating leukocytes as determinants of injury and repair processes. Clin Neurosci Res 2006, 6: 283–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang L, Li L, Wang B, Qian DM, Song XM, Hu M. Human cytomegalovirus infection modulates thrombospondins 1 and 2 in primary fetal astrocytes. Neuroreport 2013, 24: 526–535.

    Article  CAS  PubMed  Google Scholar 

  173. Jaber SM, Polster BM. An in vitro model yields ‘importin’ new insights into chronic traumatic encephalopathy: Damaged astrocytes stop ‘thrombospondin’ to the injury: An Editorial Highlight for ‘Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies’. J Neurochem 2017, 140: 531–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A. Interactions between CD47 and thrombospondin reduce inflammation. J Immunol 2007, 178: 5930–5939.

    Article  CAS  PubMed  Google Scholar 

  175. Xie Y, Zhang J, Jin W, Tian R, Wang R. Role of Thrombospondin-1 in sepsis-induced myocardial injury. Mol Med Rep 2021, 24: 869.

    Article  CAS  PubMed  Google Scholar 

  176. Masli S, Sheibani N, Cursiefen C, Zieske J. Matricellular protein thrombospondins: Influence on ocular angiogenesis, wound healing and immuneregulation. Curr Eye Res 2014, 39: 759–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Roberts DD, Miller TW, Rogers NM, Yao M, Isenberg JS. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 2012, 31: 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jayakumar AR, Tong XY, Shamaladevi N, Barcelona S, Gaidosh G, Agarwal A, et al. Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies. J Neurochem 2017, 140: 645–661.

    Article  CAS  PubMed  Google Scholar 

  179. Thom M, Zhou J, Martinian L, Sisodiya S. Quantitative post-mortem study of the hippocampus in chronic epilepsy: Seizures do not inevitably cause neuronal loss. Brain 2005, 128: 1344–1357.

    Article  PubMed  Google Scholar 

  180. Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, et al. Role of astrocytes in post-traumatic epilepsy. Front Neurol 2019, 10: 1149.

    Article  PubMed  PubMed Central  Google Scholar 

  181. McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006, 2006: re12.

    Article  PubMed  Google Scholar 

  182. Misenheimer TM, Mosher DF. Calcium ion binding to thrombospondin 1. J Biol Chem 1995, 270: 1729–1733.

    Article  CAS  PubMed  Google Scholar 

  183. Martin-Manso G, Galli S, Ridnour LA, Tsokos M, Wink DA, Roberts DD. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 2008, 68: 7090–7099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, et al. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020, 18: 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bazzazi H, Isenberg JS, Popel AS. Inhibition of VEGFR2 activation and its downstream signaling to ERK1/2 and calcium by thrombospondin-1 (TSP1): In silico investigation. Front Physiol 2017, 8: 48.

    PubMed  PubMed Central  Google Scholar 

  186. Yang Y, Yang F, Yang F, Li CL, Wang Y, Li Z, et al. Gabapentinoid insensitivity after repeated administration is associated with down-regulation of the α(2)δ-1 subunit in rats with central post-stroke pain hypersensitivity. Neurosci Bull 2016, 32: 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Calzada MJ, Kuznetsova SA, Sipes JM, Rodrigues RG, Cashel JA, Annis DS, et al. Calcium indirectly regulates immunochemical reactivity and functional activities of the N-domain of thrombospondin-1. Matrix Biol 2008, 27: 339–351.

    Article  CAS  PubMed  Google Scholar 

  188. Wang B, Li X, Yu N, Yang L, Nan C, Guo L, et al. Intracerebral hemorrhage alters α2δ1 and thrombospondin expression in rats. Exp Ther Med 2022, 23: 327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kim SK, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest 2016, 126: 1983–1997.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Risher WC, Kim N, Koh S, Choi JE, Mitev P, Spence EF, et al. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 2018, 217: 3747–3765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kadurin I, Ferron L, Rothwell SW, Meyer JO, Douglas LR, Bauer CS, et al. Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels. Elife 2016, 5: e21143.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by the Natural Science Foundation of Shandong Province (ZR2021MH034 and ZR2022MH059) and the National Natural Science Foundation of China (81573412). We’d like to thank Editage for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shucui Li or Hongliu Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhai, Y., Yuan, Y. et al. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01194-2

Keywords

Navigation