1 Introduction

Convexity theory provides robust approaches and concepts for solving an extensive variety of problems in pure and practical mathematics. Because of their tenacity, convex functions have been applied to a wide range of mathematical disciplines, resulting in the discovery of several inequalities in the literature. One famous inequality is the Hermite–Hadamard inequality, which has found applications in convexity theory. In [16], the author introduces a novel class of functions called as h-convex functions

Definition 1

Let \(h:J\rightarrow \mathbb {R}\) be a non-negative function, \( h\ne 0\). We say that \(f:I\rightarrow \mathbb {R}\) is an h-convex function, if f is non-negative and for all \(x,y\in I\), \(\alpha \in (0,1)\) we have

$$\begin{aligned} f(\alpha x+(1-\alpha )y)\le h(\alpha )f(x)+h(1-\alpha )f(y). \end{aligned}$$
(1.1)

If the inequality (1.1) is reversed, then f is said to be h-concave.

By putting \(h(\alpha )=\alpha \), \(h(\alpha )=1\), \(h(\alpha ) =\alpha ^{s}\), \(h(\alpha )=\displaystyle \frac{1}{n} \sum \nolimits _{k=1}^{n}\alpha ^{\frac{1}{k}}\) and \(h(\alpha ) =\frac{1}{\alpha }\) in (1.1), Definition 1 reduces to some wel known function classes, P-functions [5, 11], s-convex functions [3], n-fractional polynomial convex functions [7] and Godunova–Levin functions [6], respectively.

2 \(\psi \)-Hilfer operators

Definition 2

Let \([a,b]\subseteq [ 0,+\infty ).\) Let \(\beta >0\) and \(\psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \(\tau \in [ a,b]\). The left and right sided \(\psi \)-Hilfer fractional integral of a function f with respect to the function \(\psi \) on [ab] are defined respectively as follows.

$$\begin{aligned}&{}^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }f(x)=\displaystyle \frac{1}{\Gamma (\beta )}\int _{a}^{x} \left( \psi (x)-\psi (t)\right) ^{\beta -1} \psi ^{\prime }(t)f(t)dt,\quad a<x\le b. \end{aligned}$$
(2.1)
$$\begin{aligned}&{}^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }f(x) =\displaystyle \frac{1}{\Gamma (\beta )}\int _{x}^{b}\left( \psi (t)-\psi (x)\right) ^{\beta -1} \psi ^{\prime }(t)f(t)dt,\quad a\le x<b, \end{aligned}$$
(2.2)

where the gamma function verified

$$\begin{aligned} \Gamma (\beta )=\displaystyle \int _{0}^{\infty }t^{\beta -1} e^{-t}dt\,,\quad \beta \,\Gamma (\beta )=\Gamma (\beta +1). \end{aligned}$$

For these operators, consider the following space

$$\begin{aligned} X[a, b]=\left\{ f: \ \parallel f\parallel _{X}=\left( \displaystyle \int _{a}^{b} \mid f(x)\mid \psi \,^{\prime }(x)dx\right) <\infty \right\} . \end{aligned}$$

One essential property of \(\psi \)-Hilfer operators is that they are dependent on the function \(\psi \) and produce a particular type of fractional integrals.

  1. (1)

    Taking \(\psi (\tau )=\tau \), we get Riemann-Liouville fractional operator of order \(\beta >0\)

    $$\begin{aligned}{} & {} \mathcal{R}\mathcal{L}_{a^{+}}^{\beta }f(x)=\displaystyle \frac{1}{\Gamma (\beta )} \int _{a}^{x}(x-s)^{\beta -1}f(s)ds,\quad x>a, \\{} & {} \mathcal{R}\mathcal{L}_{b^{-}}^{\beta }f(x)=\displaystyle \frac{1}{\Gamma (\beta )} \int _{x}^{b}(s-x)^{\beta -1}f(s)ds,,\quad x<b. \end{aligned}$$
  2. (2)

    Using \(\psi (\tau )=\ln \tau \), we deduce Hadamard fractional operator of order \(\beta >0\)

    $$\begin{aligned}{} & {} \mathcal {H}_{a^{+}}^{\beta }f(x)=\displaystyle \frac{1}{\Gamma (\beta )} \int _{a}^{x}\left( \ln \frac{x}{s}\right) ^{\beta -1}f(s)\frac{ds}{s}, \quad x>a>1, \\{} & {} \mathcal {H}_{a^{+}}^{\beta }f(x)=\displaystyle \frac{1}{\Gamma (\beta )} \int _{x}^{b}\left( \ln \frac{s}{x}\right) ^{\beta -1} f(s)\frac{ds}{s},\quad 1<x<b. \end{aligned}$$
  3. (3)

    Putting \(\psi (\tau )=\frac{\tau ^{\rho }}{\rho }\) where \(\rho >0\), we obtain Katugompola fractional operators of order \(\beta >0\).

    $$\begin{aligned}{} & {} \mathcal {K}_{a^{+}}^{\beta }f(x)=\displaystyle \frac{(\rho )^{1-\beta }}{\Gamma (\beta )}\int _{a}^{x}\left( x^{\rho }-s^{\rho }\right) ^{\beta -1} f(s)s^{\rho -1}ds,\ x>a, \\{} & {} \mathcal {K}_{b^{-}}^{\beta }f(x)=\displaystyle \frac{(\rho )^{1-\beta }}{ \Gamma (\beta )}\int _{x}^{b}\left( s^{\rho }-x^{\rho }\right) ^{\beta -1}f(s)s^{\rho -1}ds,\ x<b. \end{aligned}$$

In the literature, papers devoted to fractional integral inequalities. For some of them, please refer to [1, 2, 4, 9, 12,13,14].

3 B-function

We now give a definition of the B-function.

Definition 3

Let \(a<b\) and \(h:(a,b)\subset \mathbb {R}\rightarrow \mathbb {R}\) be a non-negative function. The function h is a B-function, or that h belongs to the class B(ab), if for all \(x\in (a,b)\), we have

$$\begin{aligned} h(x-a)+h(b-x)\le 2\,h\left( \frac{a+b}{2}\right) . \end{aligned}$$
(3.1)

If the inequality (3.1) is reversed, h is called A-function, or that h belongs to the class A(ab).

If we have the equality in (3.1), h is called AB-function, or that h belongs to the class AB(ab).

Corollary 1

Let \(h: (0, 1) \rightarrow \mathbb {R}\) be a non-negative function.

  1. (1)

    The function \(h(\alpha )=1\) is AB-function, B-function and A-function. And the function \(h(\alpha )=\alpha \) is AB-function, B-function and A-function under the conditions \(a=0\), \(a<0\) and \(a>0\), respectively.

  2. (2)

    The function \(h(\alpha )=\alpha ^{s},\ s\in (0,1]\) is B-function.

  3. (3)

    The function \(h(\alpha ) =\displaystyle \frac{1}{n}\sum \nolimits _{k=1}^{n} \alpha ^{\frac{1}{k}},\ n,k\in \mathbb {N}\) is B-function.

  4. (4)

    The function \(h(\alpha )=\frac{1}{\alpha }\) is A-function.

Proof

  1. (1)

    The first case is obvious.

    The following result (3.2) is required to prove the next case.

    Let \(g(x)=\ln (x+1)\), \(g(0)=0\), \(g(1)=\ln 2\) and \(M(1,\ln 2)\). On the interval [0, 1], the graph of the function g appears over the line (OM). This gives us, for all \(x\in (0,1]\)

    $$\begin{aligned} \ln (x+1)\ge x\ln 2\Leftrightarrow (1+x)^{\frac{1}{x}}\ge 2, \end{aligned}$$

    taking \(x=\frac{1}{p}\), we have

    $$\begin{aligned} \hbox {for}\ \hbox {all}\ p\ge 1, \quad \left( 1+\frac{1}{p}\right) ^{p}\ge 2\,. \end{aligned}$$
    (3.2)
  2. (2)

    Let \(h(\alpha )=\alpha ^{s},\ s\in (0,1]\) and taking \(s=\frac{1}{p}\). The function h is a B-function, this means

    $$\begin{aligned} \alpha ^{\frac{1}{p}}+(1-\alpha )^{\frac{1}{p}} \le \left( \frac{1}{2} \right) ^{\frac{1}{p}-1}. \end{aligned}$$
    (3.3)

    We use absurdity to demonstrate inequality (3.3), suppose that exist \(p\ge 1\) verified

    $$\begin{aligned} \alpha ^{\frac{1}{p}}+(1-\alpha )^{\frac{1}{p}} >\left( \frac{1}{2}\right) ^{\frac{1}{p}-1}, \end{aligned}$$

    we get

    $$\begin{aligned} \displaystyle \int _{0}^{1}\left[ \alpha ^{\frac{1}{p}} +(1-\alpha )^{\frac{1}{p}}\right] d\alpha >\left( \frac{1}{2}\right) ^{\frac{1}{p}-1}, \end{aligned}$$

    thus

    $$\begin{aligned} 2\displaystyle \left( \frac{p}{p+1}\right) >\left( \frac{1}{2}\right) ^{\frac{1}{p}-1}. \end{aligned}$$

    This gives

    $$\begin{aligned} \displaystyle \left( \frac{p}{p+1}\right) ^{p}>\frac{1}{2}, \end{aligned}$$

    hence

    $$\begin{aligned} \left( 1+\frac{1}{p}\right) ^{p}<2\ \hbox {which}\ \hbox {is}\ \hbox {absurd}. \end{aligned}$$
  3. (3)

    Let \(h(\alpha )=\displaystyle \frac{1}{n}\sum \nolimits _{k=1}^{n} \alpha ^{\frac{1}{k}},\ n,k\in \mathbb {N}\), we have

    $$\begin{aligned} \alpha ^{\frac{1}{k}}+(1-\alpha )^{\frac{1}{k}}\le \left( \frac{1}{2}\right) ^{\frac{1}{k}-1}, \end{aligned}$$

    then

    $$\begin{aligned} \displaystyle \frac{1}{n}\sum \limits _{k=1}^{n}\alpha ^{\frac{1}{k}} +\displaystyle \frac{1}{n}\sum \limits _{k=1}^{n}(1-\alpha )^{\frac{1}{k}} \le \displaystyle \frac{2}{n}\sum \limits _{k=1}^{n}\left( \frac{1}{2} \right) ^{\frac{1}{k}}. \end{aligned}$$

    This yields

    $$\begin{aligned} h(\alpha )+h(1-\alpha )\le 2\,h\left( \frac{1}{2}\right) . \end{aligned}$$
  4. (4)

    Let \(h(\alpha )=\frac{1}{\alpha }\) with \(\alpha \in (0, 1)\), we have

    $$\begin{aligned} \frac{(2\alpha -1)^{2}}{\alpha (1-\alpha )}\ge 0 \Leftrightarrow \frac{1}{\alpha } +\frac{1}{1-\alpha }\ge 4, \end{aligned}$$

    therefore

    $$\begin{aligned} h(\alpha ) +h(1-\alpha )\ge 2 \,h\left( \frac{1}{2}\right) . \end{aligned}$$

\(\square \)

Motivated by previous literature, we use \(\psi \)-Hilfer operators to establish a new version of Hermite–Hadamard and trapezoid inequalities based on h-convex functions where h belongs to the class B(0, 1). We also provide new midpoint inequalities using h-convex functions.

4 Hermite–Hadamard inequalities

We now present the first result of the Hermite–Hadamard inequality for h-convexity of the function f involving \(\psi \)-Hilfer operators.

Theorem 4.1

Let \(\beta >0\), h be a B-function. Let \(f\in X[a,b]\) be a h-convex function and \(\psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \( \tau \in [ a,b]\). Then the following inequalities hold

$$\begin{aligned} \displaystyle \frac{1}{2\,h\left( \frac{1}{2}\right) }f\left( \displaystyle \frac{a+b}{2}\right)&\le \displaystyle \frac{\Gamma (\beta +1)}{4\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ {\,^{\psi } \mathfrak {J}_{b^{-}}^{\beta }}F(a)+{\,^{\psi } \mathfrak {J}_{a^{+}}^{\beta }}F(b)\right] \nonumber \\&\le 2\,h\left( \frac{1}{2}\right) \left[ \displaystyle \frac{f(b)+f(a)}{2}\right] , \end{aligned}$$
(4.1)

where

$$\begin{aligned} F(t)=f(t)+f\left( a+b-t\right) . \end{aligned}$$
(4.2)

Proof

For any \(t\in [ a,b]\), we have

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right)&=f\left( \displaystyle \frac{1}{2}(a+b-t)+\frac{1}{2}t\right) \\&\le h\left( \frac{1}{2}\right) \,f\left( a+b-t\right) +h\left( \frac{1}{2}\right) \,f(t), \end{aligned}$$

then

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right) \le h\left( \frac{1}{2}\right) \,F(t). \end{aligned}$$
(4.3)

Multiplying (4.3) by \(\beta \left( \psi (b)-\psi (t)\right) ^{\beta -1}\psi ^{^{\prime }}(t)\) and integrating over \(t\in [ a,b]\), we result

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right) \left( \psi (b) -\psi (a)\right) ^{\beta }\le \Gamma (\beta +1)h \left( \frac{1}{2}\right) \,{\,^{\psi } \mathfrak {J}\,_{a^{+}}^{\beta }}F(b). \end{aligned}$$
(4.4)

Multiplying (4.3) by \(\beta \left( \psi (t)-\psi (a)\right) ^{\beta -1}\psi ^{^{\prime }}(t)\) and integrating over \(t\in [ a,b]\), we get

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right) \left( \psi (b) -\psi (a)\right) ^{\beta }\le \Gamma (\beta +1)h \left( \frac{1}{2}\right) \,{\,^{\psi } \mathfrak {J}\,_{b^{-}}^{\beta }}F(a). \end{aligned}$$
(4.5)

By adding the inequalities (4.4) and (4.5), we deduce

$$\begin{aligned} \displaystyle \frac{1}{h\left( \frac{1}{2}\right) }f \left( \displaystyle \frac{a+b}{2}\right) \le \displaystyle \frac{ \Gamma (\beta +1)}{2\,\left( \psi (b)-\psi (a)\right) ^{\beta }} \left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi } \mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] . \end{aligned}$$
(4.6)

Put \(t=(1-s)\,a+s\,b\) in (4.2) for \(s\in (0,1)\) and using the h-convexity of f, we get

$$\begin{aligned} F(t)&=f\left( (1-s)\,b+s\,a\right) +f\left( (1-s)\,a+s\,b\right) \\&\le \displaystyle \,h(1-s)\left[ f(b)+f(a)\right] +\,h(s) \left[ f(b)+f(a)\right] \\&=\left( \,h(s)+\,h(1-s)\right) \left[ f(b)+f(a)\right] , \end{aligned}$$

given that h is a B-function, we conclude

$$\begin{aligned} F(t)\le 2\,h\left( \frac{1}{2}\right) \,\left[ f(b)+f(a)\right] . \end{aligned}$$
(4.7)

Using the same method as previously on (4.7), we obtain

$$\begin{aligned} \displaystyle \frac{\Gamma (\beta +1)}{2\,\left( \psi (b) -\psi (a)\right) ^{\beta }}\left[ {\,^{\psi }\mathfrak {J} \,_{b^{-}}^{\beta }}F(a)+{\,^{\psi } \mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \le 2\,h\left( \frac{1}{2}\right) \,\left[ f(b)+f(a)\right] . \end{aligned}$$
(4.8)

Combining the inequality (4.6) with the inequality (4.8) yields the desired outcome. \(\square \)

Taking \(\psi (x)=x\) and \(\beta =1\), we conclude the following new version of the Hermite–Hadamard inequality, see (Theorem.1 [15]).

Corollary 2

Let h be a B-function. Let \(f\in L[a,b]\) be a h-convex function. Then the following inequalities hold

$$\begin{aligned} \displaystyle \frac{1}{2 \,h\left( \frac{1}{2}\right) }f\left( \displaystyle \frac{a+b}{2}\right) \le \displaystyle \frac{1}{b-a}\int _{a}^{b}f(t)dt \le \left[ f(b)+f(a)\right] \,h\left( \frac{1}{2}\right) . \end{aligned}$$
(4.9)

The following results are dependent on the function h presented in Theorem 4.1. First, assuming \(h(\alpha )=\alpha \), we may obtain the result using the convex functions described in [8].

Corollary 3

Let \(f\in X[a,b]\) be a convex function and \(\psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \(\tau \in [ a,b]\), \(\beta >0\). Then the following inequalities hold

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right) \le \displaystyle \frac{\Gamma (\beta +1)}{4\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ {\,^{\psi } \mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] \le \left[ \displaystyle \frac{f(b)+f(a)}{2}\right] , \end{aligned}$$
(4.10)

where \(F(t)=f(t)+f(a+b-t)\).

By setting \(h(\alpha )=1\), we get the following result using \(\psi \)-Hilfer operators with function f belongs to class P-function.

Corollary 4

Let \(\beta >0\), \(f\in X[a,b]\) be a P-function and \( \psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \(\tau \in [ a,b]\). Then the following inequalities hold

$$\begin{aligned} f\left( \displaystyle \frac{a+b}{2}\right) \le \displaystyle \frac{\Gamma (\beta +1)}{2\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ {\,^{\psi } \mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] \le 2\,\left[ f(b)+f(a)\right] , \end{aligned}$$
(4.11)

where \(F(t)=f(t)+f(a+b-t)\).

Using \(h(\alpha )=\alpha ^{s}\), we obtain the following result through \(\psi \)-Hilfer operators and s-convex functions.

Corollary 5

Let \(\beta >0\), \(s\in (0,1]\) and \(f\in X[a,b]\) be a s-convex function and let \(\psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \( \tau \in [ a,b]\). Then the following inequalities hold

$$\begin{aligned} 2^{s-1}\,f\left( \displaystyle \frac{a+b}{2}\right)&\le \displaystyle \frac{ \Gamma (\beta +1)}{4\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] \nonumber \\&\le \left[ \displaystyle \frac{f(b)+f(a)}{ 2^{s}\,}\right] , \end{aligned}$$
(4.12)

where \(F(t)=f(t)+f(a+b-t)\).

Taking \(h(\alpha )=\frac{1}{n}\sum \nolimits _{k=1}^{n}\alpha ^{\frac{1}{k}}\), we deduce the following result through \(\psi \)-Hilfer operators and n-fractional polynomial convex functions.

Corollary 6

Let \(\beta >0\) and \(f\in X [a,b]\) be a n-fractional polynomial convex function and \(\psi \) be a positive, strictly increasing differentiable function such that \(\psi \,^{\prime }(\tau )\ne 0\) for all \( \tau \in [a, b]\). Then the following inequalities hold

$$\begin{aligned} \displaystyle \frac{1}{C_{n}}f\left( \displaystyle \frac{a+b}{2}\right)&\le \displaystyle \frac{\Gamma (\beta +1)}{2\, \left( \psi (b) -\psi (a) \right) ^{\beta } }\left[ {\,^{\psi }\mathfrak {J}\,^{\alpha }_{b^{-}}}F(a) + { \,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}}F(b)\right] \nonumber \\&\le C_{n}\left[ \displaystyle \frac{f(b)+f(a)}{2}\right] , \end{aligned}$$
(4.13)

where \(F( t) = f(t) + f( a + b - t) \) and \(C_{n}=\frac{2}{n} \sum \nolimits _{k=1}^{n}\left( \frac{1}{2}\right) ^{\frac{1}{k}}\).

Remark 1

If we choose \(\psi (\tau )=\tau \), \(\psi (\tau )=\ln \tau \) and \(\psi (\tau )=\frac{ \tau ^{\rho }}{\rho }\), respectively, in Corollaries 4, 5 and 6, we obtain Hermite–Hadamard inequality for P-function, s-convex functions and n-fractional polynomial convex functions, respectively, involving Riemann-Liouville fractional operator, Hadamard fractional operator, Katugompola fractional operators, respectively.

5 Trapezoid type inequalities

In this section, we will explore certain trapezoid-like inequalities for h-convexity functions utilizing \(\psi \)-Hilfer operators, as well as their particular results, where h belongs to the class B(0, 1). To accomplish this, we must first establish equality in the lemma that follows.

Lemma 5.1

If \(\beta ,\psi \) are defined as in Theorem 4.1 and \( f:[a,b]\rightarrow \mathbb {R}\) is a differentiable mapping to (ab), then the following identity holds.

$$\begin{aligned}&\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ {\,^{\psi }\mathfrak {J} \,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b) \right] =\displaystyle \frac{b-a}{4\, \left( \psi (b)-\psi (a)\right) ^{\beta }} \nonumber \\&\displaystyle \times \int _{0}^{1}\left( 2\,\left( \psi (b)-\psi (a)\right) ^{\beta }-A_{\psi ,\beta }(s)\right) \left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds, \end{aligned}$$
(5.1)

where

$$\begin{aligned} A_{\psi ,\beta }(s)=\left( \psi (b)-\psi \left( sa+(1-s)b\right) \right) ^{\beta }+\left( \psi \left( (1-s)a+sb\right) -\psi (a)\right) ^{\beta }. \end{aligned}$$
(5.2)

Proof

Let

$$\begin{aligned} J_{1}=\int _{a}^{b}\left[ \left( \psi (b)-\psi (a)\right) ^{\beta } -\left( \psi (b)-\psi (t)\right) ^{\beta }\right] F^{\prime }(t)dt. \end{aligned}$$
(5.3)

Integrating by parts (5.3) and using (4.2), we get

$$\begin{aligned} J_{1}=\left[ \left( \psi (b)-\psi (a)\right) ^{\beta }-\left( \psi (b)-\psi (t)\right) ^{\beta }\right] F(t)\Bigg |_{a}^{b}-{\beta }\displaystyle \int _{a}^{b}\left( \psi (b)-\psi (t)\right) ^{\beta -1}\psi ^{\prime }(t)F(t)dt, \end{aligned}$$

therefore

$$\begin{aligned} J_{1}=\left( \psi (b)-\psi (a)\right) ^{\beta }F(b)-\Gamma (\beta +1) \ {\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b). \end{aligned}$$
(5.4)

Similarly, let

$$\begin{aligned} J_{2}=\int _{a}^{b}\left[ \left( \psi (b)-\psi (a)\right) ^{\beta } -\left( \psi (t)-\psi (a)\right) ^{\beta }\right] F^{\prime }(t)dt. \end{aligned}$$
(5.5)

Integrating by parts (5.5), we deduce

$$\begin{aligned} J_{2}=-\left( \psi (b)-\psi (a)\right) ^{\beta }F(a)+\Gamma (\beta +1) \ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a). \end{aligned}$$
(5.6)

Since \(F(a)=F(b)=f(a)+f(b)\), from (5.4) and (5.6), we obtain

$$\begin{aligned} J_{1}-J_{2}=2\,\left( \psi (b)-\psi (a)\right) ^{\beta } \left( f(a)+f(b)\right) -\Gamma (\beta +1)\left[ {\,^{\psi }\mathfrak {J} \,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b) \right] , \end{aligned}$$

thus

$$\begin{aligned}&\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\left( \psi (b)-\psi (a)\right) ^{\beta }}\left[ {\,^{\psi }\mathfrak {J} \,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b) \right] \nonumber \\&\quad =\displaystyle \frac{1}{4\,\left( \psi (b)-\psi (a)\right) ^{\beta }} \left( J_{1}-J_{2}\right) . \end{aligned}$$
(5.7)

On the other hand, given that \(F^{\prime }(t)=f^{\prime }(t)-f^{\prime }(a+b-t)\), then from (5.3), we get

$$\begin{aligned} J_{1}=\displaystyle \int _{a}^{b}\left[ \left( \psi (b)-\psi (a)\right) ^{\beta }-\left( \psi (b)-\psi (t)\right) ^{\beta }\right] \left( f^{\prime }(t)-f^{\prime }(a+b-t)\right) dt. \end{aligned}$$

Changing the variable \(t=sa+(1-s)b\) for \(s\in [ 0,1]\) produces

$$\begin{aligned} J_{1}= & {} (b-a)\,\displaystyle \int _{0}^{1} \left[ \left( \psi (b)-\psi (a)\right) ^{\beta }-\left( \psi (b)-\psi (sa+(1-s)b)\right) ^{\beta }\right] \\{} & {} \displaystyle \times \left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds. \end{aligned}$$

Similarly, from (5.5), we get

$$\begin{aligned} J_{2}= & {} \displaystyle \int _{a}^{b}\left[ \left( \psi (b)-\psi (a)\right) ^{\beta }-\left( \psi (t)-\psi (a)\right) ^{\beta }\right] \left( f^{\prime }(t)-f^{\prime }(a+b-t)\right) dt \\= & {} (b-a)\,\displaystyle \int _{0}^{1}\left[ \left( \psi (b)-\psi (a)\right) ^{\beta }-\left( \psi ((1-s)a+sb)-\psi (a)\right) ^{\beta }\right] \\{} & {} \displaystyle \times \left[ f^{\prime }\left( (1-s)a+sb\right) -f^{\prime }\left( sa+(1-s)b\right) \right] ds. \end{aligned}$$

As a result,

$$\begin{aligned} J_{1}-J_{2}&=(b-a)\,\int _{0}^{1}\left( 2\,\left( \psi (b)-\psi (a)\right) ^{\beta }-A_{\psi ,\beta }(s)\right) \nonumber \\&\quad \left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds. \end{aligned}$$
(5.8)

To get the desired equality (5.1), simply replace (5.8) with (5.7). \(\square \)

Theorem 5.1

Assume h is a B-function and \(\beta , \psi \) are defined according to Lemma 5.1. If \(|f^{\prime }|\) is a h-convex mapping on [ab], then the trapezoid type inequality is obtained as

$$\begin{aligned}&\Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{ \Gamma (\beta +1) }{4\,\Omega (\psi ,\beta ) } \left[ {\,^{\psi }\mathfrak {J} \,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}} F(b) \right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{ (b-a)\,h\left( \frac{1}{2}\right) }{2\,\Omega (\psi ,\beta )}\Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ]\int _0^1 \big | 2\,\Omega (\psi ,\beta ) -A_{\psi , \beta }(s) \big | ds, \end{aligned}$$
(5.9)

where \(\Omega (\psi ,\beta )= \left( \psi (b)-\psi (a)\right) ^{\beta }\).

Proof

Using the absolute value of identity (5.1), the h-convexity of the function \(|f^{\prime }|\) and h is a B-function, we get

$$\begin{aligned}&\Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{ \Gamma (\beta +1) }{4\, \Omega (\psi ,\beta ) } \left[ {\,^{\psi }\mathfrak {J} \,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}} F(b) \right] \Bigg | \\&\quad \le \displaystyle \frac{ b-a }{4\,\Omega (\psi ,\beta ) }\int _{0}^{1}\big | 2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |\Big |f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \Big |ds \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\big | 2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big | \left( h(s) +h(1-s)\right) \left[ \big |f^{\prime }(a)\big |+\big |f^{\prime }(b)\big |\right] ds \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( 2 \,h\left( \frac{1}{2}\right) \left[ \big |f^{\prime }(a)\big |+\big |f^{\prime }(b)\big | \right] \right) \int _{0}^{1}\big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s) \big | ds. \end{aligned}$$

This completes the proof. \(\square \)

Using \(\psi (x)=x\) and \(\beta =1\), we derive the following new version of the trapezoidal inequality, see ([10, Corollary.1]).

Corollary 7

Let h be a B-function. If \(|f^{\prime }|\) is a h-convex mapping on [ab], then the following inequalities hold

$$\begin{aligned} \Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{1}{b-a} \int _{a}^{b}f(t)dt\Bigg | \le \displaystyle \frac{ (b-a)\,h\left( \frac{1}{2} \right) }{4}\Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ]. \end{aligned}$$
(5.10)

The following Corollaries depend on the function h given in Theorem 5.1. First, Let’s put \(h(\alpha )=\alpha \) to get a new version using the convex functions proven in [8].

Corollary 8

Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a convex mapping on [ab], then

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ]\int _{0}^{1}\big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |ds, \end{aligned}$$
(5.11)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=1\), we get the following result via \(\psi \)-Hilfer operators with function f belongs to the class P-function.

Corollary 9

Assume that \(\beta , \psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a P-function on [ab], thus

$$\begin{aligned}&\Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{ \Gamma (\beta +1) }{4\,\Omega (\psi ,\beta ) } \left[ {\,^{\psi }\mathfrak {J} \,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}} F(b) \right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{2\,\Omega (\psi ,\beta )}\Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ]\int _0^1 \big | 2\,\Omega (\psi ,\beta ) -A_{\psi , \beta }(s) \big | ds, \end{aligned}$$
(5.12)

where \(\Omega (\psi ,\beta )= \left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=\alpha ^{s}\), we get the following result via \(\psi \)-Hilfer operators with s-convex functions.

Corollary 10

Assume that \(\beta , \psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a s-convex mapping on [ab], then the trapezoid type inequality is obtained as

$$\begin{aligned}&\Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{ \Gamma (\beta +1) }{4\,\Omega (\psi ,\beta ) } \left[ {\,^{\psi }\mathfrak {J} \,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}} F(b) \right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{2^{s+1}\,\Omega (\psi ,\beta )}\Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ]\int _0^1 \big | 2\,\Omega (\psi ,\beta ) -A_{\psi , \beta }(s) \big | ds, \end{aligned}$$
(5.13)

where \(\Omega (\psi ,\beta )= \left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=\frac{1}{n}\sum \nolimits _{k=1}^{n} \alpha ^{\frac{1}{k}}\), we get the following result via \(\psi \)-Hilfer operators with n-fractional polynomial convex functions.

Corollary 11

Assume that \(\beta , \psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a n-fractional polynomial convex mapping on [ab], yields

$$\begin{aligned}&\Bigg | \displaystyle \frac{ f(a) + f(b) }{2} - \displaystyle \frac{ \Gamma (\beta +1) }{4\,\Omega (\psi ,\beta ) } \left[ {\,^{\psi }\mathfrak {J} \,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J}\,^{\beta }_{a^{+}}} F(b) \right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{ (b-a)\,C_{n}}{4\,\Omega (\psi ,\beta )}\Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ]\int _0^1 \big | 2\,\Omega (\psi ,\beta ) -A_{\psi , \beta }(s) \big | ds, \end{aligned}$$
(5.14)

where \(\Omega (\psi ,\beta )= \left( \psi (b)-\psi (a)\right) ^{\beta }\) and \(C_{n}=\frac{2}{n}\sum \nolimits _{k=1}^{n} \left( \frac{1}{2}\right) ^{\frac{1}{k}}\).

Remark 2

If we choose \(\psi (\tau )=\tau \), \(\psi (\tau )=\ln \tau \) and \(\psi (\tau )=\frac{ \tau ^{\rho }}{\rho }\), respectively, in the corollaries 8, 9, 10 and 11, we establish trapezoid-type inequalities for the convex function, the function P, s-convex functions, and polynomial n-fractional convex functions, respectively, involving the Riemann-Liouville fractional operator, the Hadamard fractional operator, and the Katugompola fractional operators, respectively.

Theorem 5.2

Let h be a B-function, \(p>1\) and \(\frac{1}{p^{\prime }}+ \frac{1}{p}=1\). Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(\left| f^{\prime }\right| ^{p}\) is a h-convex mapping on [ab], then the following trapezoid type inequality is obtained

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \nonumber \\&\quad \le \displaystyle \frac{(b-a)\left( 2\,h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{4\,\Omega (\psi ,\beta )}\left( 2\int _{0}^{1}\big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left( \Big |f^{\prime }(a)\Big |^{p}+\Big |f^{\prime }(b)\Big | ^{p}\right) ^{\frac{1}{p}} \nonumber \\&\quad \le \displaystyle \frac{(b-a)\left( 2\,h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{4\,\Omega (\psi ,\beta )}\left( 2\int _{0}^{1}\big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left( \Big |f^{\prime }(a)\Big |+\Big |f^{\prime }(b)\Big |\right) , \end{aligned}$$
(5.15)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\).

Proof

By using the absolute value on equality in Lemma 5.1, we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | 2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\Big |\,\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |ds \\&\qquad \; +\displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | 2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\Big |\,\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |ds, \end{aligned}$$

Utilizing Hölder’s inequality, we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( \int _{0}^{1} \big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}}\left( \int _{0}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |^{p}ds\right) ^{\frac{1}{p}} \\&\qquad \; +\displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( \int _{0}^{1}\big | 2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{ \frac{1}{p^{\prime }}}\left( \int _{0}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right) ^{\frac{1}{p}}. \end{aligned}$$

Notice that for \(p>1\) and \(A,B\ge 0\): \(\displaystyle A^{\frac{1}{p}}+B^{ \frac{1}{p}}\le 2^{1-\frac{1}{p}}(A+B)^{\frac{1}{p}}\), then

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( 2\,\int _{0}^{1} \big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}} \\&\qquad \; \times \displaystyle \left[ \int _{0}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |^{p}ds+\int _{0}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right] ^{\frac{1}{p}}. \end{aligned}$$

Given that \(\left| f^{\prime }\right| ^{p}\) is h-convex function and h is B-function, we get

$$\begin{aligned}&\displaystyle \int _{0}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |^{p}ds +\displaystyle \int _{0}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds \\&\quad \le \left( \Big |f^{\prime }(a)\Big |^{p}+\Big |f^{\prime }(b)\Big |^{p}\right) \displaystyle \int _{0}^{1}\left( h(s)+h(1-s)\right) ds \\&\quad \le 2\,h\left( \frac{1}{2}\right) \left( \Big |f^{\prime }(a)\Big |^{p}+\Big | f^{\prime }(b)\Big |^{p}\right) , \end{aligned}$$

therefore

$$\begin{aligned}&\Bigg |\displaystyle \frac{f(a)+f(b)}{2}-\displaystyle \frac{\Gamma (\beta +1)}{ 4\,\Omega (\psi ,\beta )}\left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }} F(a)+{\,^{\psi }\mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] \Bigg | \\&\quad \le \displaystyle \frac{(b-a)\left( 2\,h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{4\,\Omega (\psi ,\beta )}\left( 2\int _{0}^{1}\big |2\,\Omega (\psi ,\beta )-A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left( \Big |f^{\prime }(a)\Big |^{p}+\Big |f^{\prime }(b)\Big | ^{p}\right) ^{\frac{1}{p}}. \end{aligned}$$

This accomplishes the first inequality in (6.14). Notice that \( A^{p}+B^{p}\le (A+B)^{p}\ \hbox {for}\ p>1\), it results the second inequality in (6.14). \(\square \)

6 Midpoint type inequalities

This section presents new results on midpoint inequality involving h-convex functions via \(\psi \)-Hilfer operators, based on the identity presented in the following lemma.

Lemma 6.1

Let \(\beta >0\), \(f\in X [a,b]\) be a h-convex function and \( \psi \) be a positive, strictly increasing differentiable function such that \( \psi \,^{\prime }(\tau )\ne 0\) for all \(\tau \in [a, b]\). The following identity holds

$$\begin{aligned}&\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J} \,^{\beta }_{a^{+}}} F(b) \right] -\displaystyle f\left( \frac{a+b}{2}\right) \nonumber \\&\quad =\displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}A_{\psi ,\beta }(s)\left[ f^{\prime }\Big (sa+(1-s)b\Big )-f^{\prime }\Big ((1-s)a+sb\Big ) \right] ds \nonumber \\&\qquad \;\;-\displaystyle \frac{b-a}{2}\int _{\frac{1}{2}}^{1}\left[ f^{\prime }\Big ( sa+(1-s)b\Big )-f^{\prime }\Big ((1-s)a+sb\Big )\right] ds. \end{aligned}$$
(6.1)

Proof

Let

$$\begin{aligned} K_{1}=-\int _{a}^{b}\left( \psi (b)-\psi (t)\right) ^{\beta }F\,^{\prime }(t)dt+\left( \psi (b)-\psi (a)\right) ^{\beta }\int _{a}^{\frac{a+b}{2} }F\,^{\prime }(t)dt. \end{aligned}$$
(6.2)

Integrating by parts (6.2), we get

$$\begin{aligned} K_{1}&=-\left( \psi (b)-\psi (t)\right) ^{\beta }F(t)\Big \vert _{a}^{b}-{ \beta }\displaystyle \int _{a}^{b}\left( \psi (b)-\psi (t)\right) ^{\beta -1}\,F(t)dt \\&\quad \; +\left( \psi (b)-\psi (a)\right) ^{\beta }F(t)\Big \vert _{a}^{\frac{a+b}{2}}. \end{aligned}$$

This gives

$$\begin{aligned} K_{1}=\left( \psi (b)-\psi (a)\right) ^{\beta }F\left( \frac{a+b}{2}\right) -\Gamma (\beta +1)\ {\,^{\psi } \mathfrak {J}\,_{a^{+}}^{\beta }}F(b). \end{aligned}$$
(6.3)

Consider the following integral

$$\begin{aligned} K_{2}=\int _{a}^{b}\left( \psi (t)-\psi (a)\right) ^{\beta }F\,^{\prime }(t)dt-\left( \psi (b)-\psi (a)\right) ^{\beta }\int _{\frac{a+b}{2} }^{b}F\,^{\prime }(t)dt. \end{aligned}$$
(6.4)

Integrating by parts yields

$$\begin{aligned} K_{2}&=\left( \psi (t)-\psi (a)\right) ^{\beta }F(t)\Big \vert _{a}^{b}-{ \beta }\displaystyle \int _{a}^{b}\left( \psi (t)-\psi (a)\right) ^{\beta -1}\,F(t)dt \\&\quad \; -\left( \psi (b)-\psi (a)\right) ^{\beta }F(t)\Big \vert _{\frac{a+b}{2} }^{b}, \end{aligned}$$

which gives

$$\begin{aligned} K_{2}=\left( \psi (b)-\psi (a)\right) ^{\beta }F \left( \frac{a+b}{2}\right) -\Gamma (\beta +1)\grave{u}{\,^{\psi } \mathfrak {J}\,_{b^{-}}^{\beta }}F(a). \end{aligned}$$
(6.5)

By adding (6.3) and (6.5), then using (4.2) we obtain

$$\begin{aligned} K_{1}+K_{2}=4\,\Omega (\psi ,\beta )\,f\left( \frac{a+b}{2}\right) -\Gamma (\beta +1) \left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi } \mathfrak {J }\,_{a^{+}}^{\beta }}F(b)\right] . \end{aligned}$$
(6.6)

Furthermore, by changing the variable \(t=sa+(1-s)b\) in (6.2) and using (4.2), we get

$$\begin{aligned} K_{1}&=-(b-a)\,\displaystyle \int _{0}^{1}\left( \psi (b)-\psi (sa+(1-s)b)\right) ^{\beta }\displaystyle \\&\quad \left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds \\&\quad \; +(b-a)\,\left( \psi (b)-\psi (a)\right) ^{\beta }\displaystyle \int _{\frac{1}{2}}^{1}\left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime } \left( (1-s)a+sb\right) \right] ds. \end{aligned}$$

Changing the variable \(t=(1-s)a+sb\) in (6.4) and using (4.2), we obtain

$$\begin{aligned} K_{2}&=(b-a)\,\displaystyle \int _{0}^{1}\left( \psi ((1-s)a+sb)-\psi (a)\right) ^{\beta }\displaystyle \nonumber \\&\quad \left[ f^{\prime }\left( (1-s)a+sb\right) -f^{\prime }\left( sa+(1-s)b\right) \right] ds \\&\quad \; -(b-a)\,\left( \psi (b)-\psi (a)\right) ^{\beta }\displaystyle \int _{ \frac{1}{2}}^{1}\left[ f^{\prime }\left( (1-s)a+sb\right) -f^{\prime }\left( sa+(1-s)b\right) \right] ds, \end{aligned}$$

therefore

$$\begin{aligned} K_{1}+K_{2}&=-(b-a)\,\displaystyle \int _{0}^{1}A_{\psi ,\beta }(s)\left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds \nonumber \\&\quad \; +2\,(b-a)\,\Omega (\psi ,\beta )\displaystyle \int _{\frac{1}{2}}^{1} \left[ f^{\prime }\left( sa+(1-s)b\right) -f^{\prime }\left( (1-s)a+sb\right) \right] ds. \end{aligned}$$
(6.7)

Replacing (6.7) in (6.6), we get the desired equality (6.1). \(\square \)

Theorem 6.1

Assume h is a B-function and \(\beta , \psi \) are defined according to Lemma 5.1. If \(|f^{\prime }|\) is a h-convex mapping on [ab], then the midpoint type inequality is achieve.

$$\begin{aligned}&\Bigg | \displaystyle \frac{ \Gamma (\beta +1) }{4\, \Omega (\psi , \beta ) } \left[ {\,^{\psi }\mathfrak {J}\,^{\beta }_{b^{-}}} F(a) + {\,^{\psi }\mathfrak {J} \,^{\beta }_{a^{+}}} F(b) \right] - \displaystyle f\left( \frac{ a +b}{2} \right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a }{4} \left( 1+ \displaystyle \frac{1}{\Omega (\psi ,\beta ) }\int _0^1 \Big | A_{\psi , \beta }(s)\Big | ds\right) \Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ] . \end{aligned}$$
(6.8)

Proof

Using the absolute value of the identity (6.1) and the h-convexity of the function \(|f^{\prime }|\), we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | A_{\psi ,\beta }(s)\Big |\left[ \Big |f^{\prime }\big (sa+(1-s)b\big )\Big |+\Big | f^{\prime }\big ((1-s)a+sb\big )\Big |\right] ds \\&\qquad \; +\displaystyle \frac{b-a}{2}\int _{\frac{1}{2}}^{1} \left[ \Big |f^{\prime }\big (sa+(1-s)b\big )\Big |+\Big |f^{\prime } \big ((1-s)a+sb\big )\Big |\right] ds\\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | A_{\psi ,\beta }(s)\Big |\left( h(s)+h(1-s)\right) \left[ \big |f^{\prime }(a) \big |+\big |f^{\prime }(b)\big |\right] ds \\&\qquad \; +\displaystyle \frac{b-a}{2}\int _{\frac{1}{2}}^{1}\left( h(s)+h(1-s)\right) \left[ \big |f^{\prime }(a)\big | +\big |f^{\prime }(b)\big |\right] ds. \end{aligned}$$

Given that h is a B-function, we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | A_{\psi ,\beta }(s)\Big |\left( 2\,h\left( \frac{1}{2}\right) \left[ \big | f^{\prime }(a)\big |+\big |f^{\prime }(b)\big |\right] \right) ds \\&\qquad \; +\displaystyle \frac{b-a}{2}\int _{\frac{1}{2}}^{1}\left( 2\,h\left( \frac{1}{2}\right) \left[ \big |f^{\prime }(a)\big |+\big |f^{\prime }(b)\big | \right] \right) ds \\&\quad =\displaystyle \frac{(b-a)\,h\left( \frac{1}{2}\right) }{2}\left( 1+ \displaystyle \frac{1}{\Omega (\psi ,\beta )}\int _{0}^{1}\Big |A_{\psi ,\beta }(s)\Big |ds\right) \Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ]. \end{aligned}$$

This end the proof. \(\square \)

Using \(\psi (x)=x\) and \(\beta =1\), we get the following midpoint inequality.

Corollary 12

Assume h is a B-function. If \(|f^{\prime }|\) is a h-convex mapping on [ab], then the midpoint type inequality holds.

$$\begin{aligned} \Bigg | \displaystyle \frac{1}{b-a}\int _{a}^{b}f(t)dt - \displaystyle f\left( \frac{ a +b}{2}\right) \Bigg | \le ( b-a)\,h\left( \frac{1}{2}\right) \Big [ |f^{\prime }(a) | + | f^{\prime }(b) | \Big ] . \end{aligned}$$
(6.9)

The following Corollaries depend on the function h given in Theorem 6.1. First, Let’s put \(h(\alpha )=\alpha \) to get midpoint inequality with convex functions.

Corollary 13

Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a convex mapping on [ab], then

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{4}\left( 1+\displaystyle \frac{1}{\Omega (\psi ,\beta )}\int _{0}^{1}\Big |A_{\psi ,\beta }(s)\Big |ds\right) \Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ], \end{aligned}$$
(6.10)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=1\), we get midpoint type inequality via \(\psi \)-Hilfer operators with function f belongs to the class P-function.

Corollary 14

Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a P-function on [ab], thus

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )} \left[ {\,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi } \mathfrak {J}\,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f \left( \frac{a+b}{2}\right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{2}\left( 1+\displaystyle \frac{1}{\left( \psi (b)-\psi (a)\right) ^{\beta }}\int _{0}^{1}\Big |A_{\psi ,\beta }(s)\Big | ds\right) \Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ], \end{aligned}$$
(6.11)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=\alpha ^{s}\), we get the following midpoint type inequality involving \(\psi \)-Hilfer operators with s-convex functions.

Corollary 15

Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a s-convex mapping on [ab], then the trapezoid type inequality is obtained as

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{b-a}{2^{s+1}}\left( 1+\displaystyle \frac{1}{\left( \psi (b)-\psi (a)\right) ^{\beta }}\int _{0}^{1}\Big |A_{\psi ,\beta }(s)\Big | ds\right) \Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ], \end{aligned}$$
(6.12)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\).

Put \(h(\alpha )=\frac{1}{n}\sum \nolimits _{k=1}^{n}\alpha ^{\frac{1}{k}}\), we get midpoint type inequality via \(\psi \)-Hilfer operators with n-fractional polynomial convex functions.

Corollary 16

Assume that \(\beta ,\psi \) are defined as in Lemma 5.1. If \(|f^{\prime }|\) is a h-fractional polynomial convex mapping on [ab], yields

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f \left( \frac{a+b}{2}\right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{(b-a)\,C_{n}}{4}\left( 1+\displaystyle \frac{1}{ \left( \psi (b)-\psi (a)\right) ^{\beta }}\int _{0}^{1}\Big |A_{\psi ,\beta }(s)\Big |ds\right) \Big [|f^{\prime }(a)|+|f^{\prime }(b)|\Big ], \end{aligned}$$
(6.13)

where \(\Omega (\psi ,\beta )=\left( \psi (b)-\psi (a)\right) ^{\beta }\) and \( C_{n}=\frac{2}{n}\sum \nolimits _{k=1}^{n}\left( \frac{1}{2}\right) ^{\frac{1}{k} }\).

Remark 3

If we choose \(\psi (\tau )=\tau \), \(\psi (\tau )=\ln \tau \) and \(\psi (\tau )=\frac{ \tau ^{\rho }}{\rho }\), respectively, in the corollaries 13, 14, 15 and 16, we establish midpoint type inequalities for the convex function, the function P, s-convex functions, and polynomial n-fractional convex functions, respectively, involving the Riemann-Liouville fractional operator, the Hadamard fractional operator, and the Katugompola fractional operators, respectively.

Theorem 6.2

Let \(\ p>1\), \(\frac{1}{p^{\prime }}+\frac{1}{p}=1\) and h be a B-function. Assume that \(\beta ,\psi \) are defined as in Lemma 6.1. If \(\left| f^{\prime }\right| ^{p}\) is a h-convex mapping on [ab], we get the following midpoint type inequality

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \nonumber \\&\quad \le \displaystyle \frac{(b-a)\left( 2\, h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{2}\left( 1+\frac{1}{\Omega \,^{p^{\prime }}(\psi ,\beta )} \int _{0}^{1}\big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left[ \big |f^{\prime }(a)\big |^{p}+\big |f^{\prime }(b)\big |^{p} \right] ^{\frac{1}{p}} \nonumber \\&\quad \le \displaystyle \frac{(b-a)\left( 2\, h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{2}\left( 1+\frac{1}{\Omega \,^{p^{\prime }}(\psi ,\beta )} \int _{0}^{1}\big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left( \Big |f^{\prime }(a)\Big |+\Big |f^{\prime }(b)\Big |\right) . \end{aligned}$$
(6.14)

Proof

Apply Lemma 5.1 and the absolute value, we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\int _{0}^{1}\Big | A_{\psi ,\beta }(s)\Big |\left[ \Big |f^{\prime }\big (sa+(1-s)b\big )\Big |+\Big | f^{\prime }\big ((1-s)a+sb\big )\Big |\right] ds \\&\qquad \; +\displaystyle \frac{b-a}{2}\int _{\frac{1}{2}}^{1}\left[ \Big |f^{\prime }\big ( sa+(1-s)b\big )\Big |+\Big |f^{\prime }\big ((1-s)a+sb\big )\Big |\right] ds. \end{aligned}$$

Using Hölder inequality and \(\displaystyle A^{\frac{1}{p}}+B^{\frac{1}{p} }\le 2^{1-\frac{1}{p}}(A+B)^{\frac{1}{p}}\), we get

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( \int _{0}^{1} \big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}}\\&\qquad \left[ \left( \int _{0}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big | ^{p}ds\right) ^{\frac{1}{p}}+\left( \int _{0}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right) ^{\frac{1}{p}}\right] \\&\qquad \; +\displaystyle \frac{b-a}{2}\left( \int _{\frac{1}{2}}^{1}ds\right) ^{\frac{1}{ p^{\prime }}}\\&\qquad \left[ \left( \int _{\frac{1}{2}}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |^{p}ds\right) ^{\frac{1}{p}}+\left( \int _{\frac{1}{2} }^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right) ^{\frac{1}{p} }\right] \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( 2\,\int _{0}^{1} \big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}}\\&\qquad \left[ \int _{0}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big | ^{p}ds+\int _{0}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right] ^{\frac{1}{p}} \\&\qquad \; +\displaystyle \frac{b-a}{2}\left[ \int _{\frac{1}{2}}^{1}\Big |f^{\prime }\left( sa+(1-s)b\right) \Big |^{p}ds+\int _{\frac{1}{2}}^{1}\Big |f^{\prime }\left( (1-s)a+sb\right) \Big |^{p}ds\right] ^{\frac{1}{p}}. \end{aligned}$$

Given that \(\left| f^{\prime }\right| ^{p}\) is a h-convex and h is B-function, we obtain

$$\begin{aligned}&\Bigg |\displaystyle \frac{\Gamma (\beta +1)}{4\,\Omega (\psi ,\beta )}\left[ { \,^{\psi }\mathfrak {J}\,_{b^{-}}^{\beta }}F(a)+{\,^{\psi }\mathfrak {J} \,_{a^{+}}^{\beta }}F(b)\right] -\displaystyle f\left( \frac{a+b}{2}\right) \Bigg | \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( 2\,\int _{0}^{1} \big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}}\\&\qquad \left[ \int _{0}^{1}\left( h(s)+h(1-s)\right) \left[ \big |f^{\prime }(a)\big | ^{p}+\big |f^{\prime }(b)\big |^{p}\right] ds\right] ^{\frac{1}{p}} \\&\qquad +\displaystyle \frac{b-a}{2}\left[ \int _{\frac{1}{2}}^{1}\left( h(s)+h(1-s)\right) \left[ \big |f^{\prime }(a)\big |^{p}+\big |f^{\prime }(b) \big |^{p}\right] ds\right] ^{\frac{1}{p}} \\&\quad \le \displaystyle \frac{b-a}{4\,\Omega (\psi ,\beta )}\left( 2\,\int _{0}^{1} \big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}} \left[ 2\,h\left( \frac{1}{2}\right) \left[ \big |f^{\prime }(a)\big |^{p}+ \big |f^{\prime }(b)\big |^{p}\right] \right] ^{\frac{1}{p}} \\&\qquad +\displaystyle \frac{b-a}{2}\left[ h\left( \frac{1}{2}\right) \left[ \big | f^{\prime }(a)\big |^{p}+\big |f^{\prime }(b)\big |^{p}\right] \right] ^{\frac{1 }{p}} \\&\quad =\displaystyle \frac{(b-a)\left( h\left( \frac{1}{2}\right) \right) ^{\frac{1 }{p}}}{2}\\&\qquad \left[ 1+\left( \frac{1}{\Omega \,^{p^{\prime }}(\psi ,\beta )} \int _{0}^{1}\big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\right] \left[ \big |f^{\prime }(a)\big |^{p}+\big |f^{\prime }(b) \big |^{p}\right] ^{\frac{1}{p}} \\&\quad \le \displaystyle \frac{(b-a)\left( h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{2}2^{1-\frac{1}{p^{\prime }}}\\&\qquad \left( 1+\frac{1}{\Omega \,^{p^{\prime }}(\psi ,\beta )}\int _{0}^{1}\big |A_{\psi ,\beta }(s)\big | ^{p^{\prime }}ds\right) ^{\frac{1}{p^{\prime }}}\left[ \big |f^{\prime }(a) \big |^{p}+\big |f^{\prime }(b)\big |^{p}\right] ^{\frac{1}{p}} \\&\quad =\displaystyle \frac{(b-a)\left( 2\, h\left( \frac{1}{2}\right) \right) ^{ \frac{1}{p}}}{2}\left( 1+\frac{1}{\Omega \,^{p^{\prime }}(\psi ,\beta )} \int _{0}^{1}\big |A_{\psi ,\beta }(s)\big |^{p^{\prime }}ds\right) ^{\frac{1}{ p^{\prime }}}\left[ \big |f^{\prime }(a)\big |^{p}+\big |f^{\prime }(b)\big |^{p} \right] ^{\frac{1}{p}}. \end{aligned}$$

This accomplishes the first inequality in (6.14).

Notice that for \(p>1\) and \(A,B\ge 0\), we have \(A^{p}+B^{p}\le (A+B)^{p}\), which yields to the second inequality in (6.14). \(\square \)