Skip to main content
Log in

Predictor-Based Fuzzy Fast Finite-Time Tracking Control for Strict-Feedback Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the problem of predictor-based fast finite-time fuzzy dynamic surface control for the nonlinear systems with strict-feedback structure is considered. Different from the traditional fuzzy dynamic surface control method, the proposed method utilizes prediction errors to update learning parameters for improving fuzzy logic systems learning behaviors in this paper. This technique can estimate the system unknown function smoothly and cannot result in high-frequency oscillations due to the existence of the overlarge adaptive gains. In addition, based on fast finite-time theorem and backstepping control technique, the developed controller can ensure all signals of the closed-loop are bounded at a finite time. Eventually, the illustrative examples are given to validate the effectiveness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, J.X., Yang, G.H.: Low-complexity tracking control of strict-feedback systems with unknown control directions. IEEE Trans. Autom. Control 64(12), 5175–5182 (2019)

    Article  MathSciNet  Google Scholar 

  2. Zhang, J.X., Wang, Q.G., Ding, W.: Global output-feedback prescribed performance control of nonlinear systems with unknown virtual control coefficients. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3137103

    Article  Google Scholar 

  3. Xu, B., Yang, C., Shi, Z.: Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 635–641 (2014)

    Article  Google Scholar 

  4. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  5. Dai, S.L., Wang, M., Wang, C.: Neural learning control of marine surface vessels with guaranteed transient tracking performance. IEEE Trans. Ind. Electron. 63(3), 1717–1727 (2016)

    Article  Google Scholar 

  6. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  7. Wang, H.Q., Ma, J.W., Zhao, X.D., Niu, B., Chen, M., Wang, W.: Adaptive fuzzy fixed-time control for high-order nonlinear systems with sensor and actuator faults. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3235395

    Article  Google Scholar 

  8. Wang, H.Q., Tong, M., Zhao, X.D., Niu, B., Yang, M.: Predefined-time adaptive neural tracking control of switched nonlinear systems. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3204275

    Article  Google Scholar 

  9. Ma, J.W., Wang, H.Q., Qiao, J.F.: Adaptive neural fixed-time tracking control for high-order nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3176625

    Article  Google Scholar 

  10. Zhang, X.F., Zhao, Z.L.: Normalization and stabilization for rectangular singular fractional order T-S fuzzy systems. Fuzzy Sets Syst. 38, 140–153 (2020)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X.F., Huang, W.K., Wang, Q.G.: Robust H-infinity adaptive sliding mode fault tolerant control for T-S fuzzy fractional order systems with mismatched disturbances. IEEE Trans. Circ. Syst. I: Regular Papers 68(3), 1297–1307 (2021)

    Google Scholar 

  12. Zhang, X.F., Huang, W.K.: Adaptive neural network sliding mode control for nonlinear singular fractional order systems with mismatched uncertainties. Fractal Fractional 4(50) (2020)

  13. Tong, S., Li, Y., Feng, G., Li, T.: Observer-based adaptive fuzzy back stepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern Part B: Cybern. 41(4), 1124–1135 (2011)

    Article  Google Scholar 

  14. Niu, B., Li, H., Qin, T., Karimi, H.R.: Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input. IEEE Trans. Syst. Man Cybern.: Syst. 48(10), 1676–1688 (2018)

    Article  Google Scholar 

  15. Cao, C., Hovakimyan, N.: Novel L1 neural network adaptive control architecture with guaranteed transient performance. IEEE Trans. Neural Netw. 18(4), 1160–1171 (2007)

    Article  Google Scholar 

  16. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    Article  MathSciNet  Google Scholar 

  17. Yang, Y., Liu, Q.D., Yue, D., Tian, Y.C.: Predictor-based neural dynamic surface control for strict-feedback nonlinear systems with unknown control gains. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3127389

    Article  Google Scholar 

  18. Yang, Y., Chen, D.D., Liu, Q.D., Zhang, T.F., Liu, A., Yue, W.B.: Predictor-based neural dynamic surface control of a nontriangular system with unknown disturbances. IEEE Trans. Circ. Syst. I: Regular Papers (2022). https://doi.org/10.1109/TCSI.2022.3166988

    Article  Google Scholar 

  19. Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  20. Sun, Z.Y., Shao, Y., Chen, C.C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  Google Scholar 

  21. Min, H., Xu, S., Gu, J., Cui, G.: Adaptive finite-time control for high-order nonlinear systems with multiple uncertainties and its application. IEEE Trans. Circ. Syst. I: Regular Papers 67(5), 1752–1761 (2020)

    MathSciNet  Google Scholar 

  22. Zhang, X.F., Lin, C., Chen, Y.Q., Boutat, D.: A unified framework of stability theorems for LTI fractional order systems with \(0 < \alpha < 2\). IEEE Trans. Circ. Syst. II: Express Briefs 67(12), 3237–3241 (2020)

    Google Scholar 

  23. Ren, H., Zong, G., Karimi, H.R.: Asynchronous finite-time filtering of networked switched systems and its application: An event-driven method. IEEE Trans. Circ. Syst. I: Regular Papers 66(1), 391–402 (2019)

    MathSciNet  Google Scholar 

  24. Sun, Z.Y., Yun, M.M., Li, T.: A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81, 455–463 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sun, Z.Y., Dong, Y.Y., Chen, C.C.: Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties. Inf. Sci. 484, 219–236 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, H.Q., Xu, K., Zhang, H.G.: Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties. IEEE Trans. Autom. Control. (2022). https://doi.org/10.1109/TAC.2022.3226703

    Article  Google Scholar 

  27. Khoo, S., Xie, L., Zhao, S., Man, Z.: Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents. Int. J. Robust Nonlinear Control 24(16), 2388–2404 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X.F., Chen, Y.Q.: Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order \(\alpha \): The \(0<\alpha <1\) case. ISA Trans. 82, 42–50 (2018)

    Article  Google Scholar 

  29. Zhang, X.F.: Relationship between integer order systems and fractional order systems and its two applications. IEEE-CAA J. Automatica Sinica 5(2), 539–643 (2018)

    MathSciNet  Google Scholar 

  30. Wang, H.Q., Xu, K., Liu, P.X.P., Qiao, J.F.: Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems. IEEE Trans. Circ. Syst. I: Regular Papers 68(10), 4337–4348 (2021)

    Google Scholar 

  31. Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)

    Article  MathSciNet  Google Scholar 

  32. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–14 (1992)

    Article  Google Scholar 

  33. Qian, C., Lin, W.: Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    Article  MathSciNet  Google Scholar 

  34. Bai, W., Wang, H.Q.: Robust adaptive fault-tolerant tracking control for a class of high-order nonlinear system with finite-time prescribed performance. Int. J. Robust Nonlinear Control 30(12), 4708–4725 (2020)

    Article  MathSciNet  Google Scholar 

  35. Yu, J.P., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018)

    Article  MathSciNet  Google Scholar 

  36. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62173046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Su, Y., Chen, M. et al. Predictor-Based Fuzzy Fast Finite-Time Tracking Control for Strict-Feedback Nonlinear Systems. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01719-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01719-x

Keywords

Navigation