Skip to main content

Advertisement

Log in

Review of the characteristics of mobile robots for health care application

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Mobile robotics has become a well-known research area in healthcare applications; as it defines itself from general robotics, it can move in the surrounding environment which is essential for replicating human abilities. Mobile robots can be utilized in the hospital for health care applications like nursing for doctor assistance and patient monitoring, drug delivery, and teleoperation for contagious diseases. However, mobile robots need unique characteristics, such as the function of locomotion, perception, navigation, and vision systems. The solution and challenge of a mobile robot’s characteristics must be considered when developing a mobile robot. Therefore, they are becoming more autonomous, adaptable to changing situations, and extending their range of applications. This study aimed to investigate the system, which includes both physical robot features (sensors & actuators) and a comparison of different mobile robots in terms of their characteristics and applications in health care. In the coming years, mobile robotics will see increased development, incorporating cognitive architecture, artificial intelligence, speech communication, and affective human–robot interaction. Future healthcare intelligent mobile robots aim to enhance autonomy, communication, data security, and ethical considerations, enhancing patient care, efficiency, and collaboration between medical professionals and technology, shaping the future of healthcare delivery. This review paper presents an overview of the current mobile robot design architecture, which advances the design of the next generation of intelligent mobile robots used in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahuja, V., Nair, L.R.: Artificial intelligence and technology in COVID era: a narrative review. J. Anaesthesiol. Clin. Pharmacol. (2021). https://doi.org/10.4103/JOACP.JOACP_558_20

    Article  Google Scholar 

  • Alatise, M.B., Hancke, G.P.: A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access 8, 39830–39846 (2020)

    Article  Google Scholar 

  • Amjad, A., Kordel, P., Fernandes, G.: A review on innovation in healthcare sector (telehealth) through artificial intelligence. Sustainability 15(8), 6655 (2023)

    Article  Google Scholar 

  • Anikin, N., Dik, A., Yambrovskaya, D., Mikhaylova, K., Markvashev, T., Petrenko, E.: The role of interactive technologies in optimizing the process of patient treatment: prospects and challenges for health care. J. Complement. Med. Res. (2023). https://doi.org/10.5455/JCMR.2023.14.03.19

    Article  Google Scholar 

  • Anikwe, C.V., et al.: Mobile and wearable sensors for data-driven health monitoring system: state-of-the-art and future prospect. Expert Syst. Appl. 202, 117362 (2022)

    Article  Google Scholar 

  • Anjum, T., Lawrence, S., Shabani, A.: Augmented reality and affective computing on the edge makes social robots better companions for older adults. ROBOVIS (2021). https://doi.org/10.5220/0010717500003061

    Article  Google Scholar 

  • Astrid, F., Beata, Z., Van den Nest, M., Julia, E., Elisabeth, P., Magda, D.-E.: The use of a UV-C disinfection robot in the routine cleaning process: a field study in an Academic hospital. Antimicrob. Resist. Infect. Control 10(1), 84 (2021). https://doi.org/10.1186/s13756-021-00945-4

    Article  Google Scholar 

  • Attanasio, A., Scaglioni, B., Momi, E.D., Fiorini, P., Valdastri, P.: Autonomy in surgical robotics. Annu. Rev. Control Robot. Auton. Syst. 4(1), 651–679 (2021). https://doi.org/10.1146/annurev-control-062420-090543

    Article  Google Scholar 

  • Awad, A., et al.: Connected healthcare: improving patient care using digital health technologies. Adv. Drug Deliv. Rev. 178, 113958 (2021)

    Article  Google Scholar 

  • Bally, E., et al.: Patients’ perspectives regarding digital health technology to support self-management and to improve integrated stroke care: qualitative interview study (preprint). J. Med. Internet Res. (2022). https://doi.org/10.2196/42556

    Article  Google Scholar 

  • Bensaci, C., Zennir, Y., Pomorski, D.: Nonlinear Control of a differential wheeled mobile robot in real time-Turtlebot 2. In: Presented at the International Conference on Advanced Technologies and Electrical Engineering (ICTAEE’18), Skikda, Algeria, 2018 (2018). [Online]. Available: https://hal.science/hal-02014895

  • Bloss, R.: Mobile hospital robots cure numerous logistic needs. Ind. Robot Int. J. 38, 567–571 (2011). https://doi.org/10.1108/01439911111179075

    Article  Google Scholar 

  • Bohr, A., Memarzadeh, K.: The rise of artificial intelligence in healthcare applications. Artifi. Intell. Healthc. (2020). https://doi.org/10.1016/B978-0-12-818438-7.00002-2

    Article  Google Scholar 

  • Broadbent: Human–Robot Interaction Research to Improve Quality—An Approach and Issues, 2011-01-01T00:00:00Z (2011)

  • Cechinel, A.K., Perez, A.L.F., Plentz, P.D.M., De Pieri, E.R.: Autonomous mobile robot using distance and priority as logistics task cost, 2020-10-18T00:00:00Z (2020). https://doi.org/10.1109/IECON43393.2020.9255008

  • Chivarov, N., et al.: Case study on human–robot interaction of the remote-controlled service robot for elderly and disabled care. Comput. Inform. (2019). https://doi.org/10.31577/CAI_2019_5_1210

    Article  Google Scholar 

  • Christoforou, E.G., Avgousti, S., Ramdani, N., Novales, C., Panayides, A.S.: The upcoming role for nursing and assistive robotics: opportunities and challenges ahead. Front. Digit. Health 2, 585656 (2020)

    Article  Google Scholar 

  • Christou, P., Simillidou, A., Stylianou, M.C.: Tourists’ perceptions regarding the use of anthropomorphic robots in tourism and hospitality. Int. J. Contemp. Hosp. Manag. 32(11), 3665–3683 (2020)

    Article  Google Scholar 

  • Ciuti, G., et al.: Frontiers of robotic endoscopic capsules: a review. J. Micro-Bio Robot. 11, 1–18 (2016)

    Article  Google Scholar 

  • Cobb, E., Sullivan, J., Foley, D., Gaffen, J., Petitpas, J.: Redesign of a Medical Courier Robot (2013)

  • Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: the social assistive robot and companion. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 745–751. IEEE (2020)

  • de Pádua Ribeiro, L.M., Pereira, J.R., da Silva Quirino, F.G.: Medication logistics in public healthcare: model adopted by the State of Minas Gerais in Brazil. Afr. J. Bus. Manag. 7(31), 3109 (2013)

    Article  Google Scholar 

  • Deo, N., Anjankar, A.: Artificial intelligence with robotics in healthcare: a narrative review of its viability in India. Cureus 15(5), e39416 (2023). https://doi.org/10.7759/cureus.39416. (in English)

    Article  Google Scholar 

  • Dewang, H.S., Mohanty, P.K., Kundu, S.: A robust path planning for mobile robot using smart particle swarm optimization. Procedia Comput. Sci. 133, 290–297 (2018)

    Article  Google Scholar 

  • Diab-El Schahawi, M., et al.: Ultraviolet disinfection robots to improve hospital cleaning: Real promise or just a gimmick? Antimicrob. Resist. Infect. Control 10, 1–3 (2021)

    Article  Google Scholar 

  • Dwivedi, R., Mehrotra, D., Chandra, S.: Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: a systematic review. J. Oral Biol. Craniofacial Res. 12(2), 302–318 (2022)

    Article  Google Scholar 

  • El Khaili, M.: Visibility graph for path planning in the presence of moving obstacles. System 4(4) (2014)

  • Elsner, M., Charniak, E.: Extending the entity grid with entity-specific features. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 125–129 (2011)

  • Engedy, I., Horváth, G.; Artificial neural network based local motion planning of a wheeled mobile robot. In: 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 213–218. IEEE (2010)

  • Esan, O., Du, S., Lodewyk, B.: Review on autonomous indoor wheel mobile robot navigation systems. In: 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), pp. 1–6. IEEE (2020)

  • Sahoo, S.K., Choudhury, B.B.: Challenges and opportunities for enhanced patient care with mobile robots in healthcare. J. Mechatron. Artif. Intell. Eng. (2023)

  • Farhud, D.D., Zokaei, S.: Ethical issues of artificial intelligence in medicine and healthcare. Iran. J. Public Health 50(11), i–v (2021). https://doi.org/10.18502/ijph.v50i11.7600. (in English)

    Article  Google Scholar 

  • Fosch-Villaronga, E., Khanna, P., Drukarch, H., Custers, B.: The role of humans in surgery automation. Int. J. Soc. Robot. 15(3), 563–580 (2023). https://doi.org/10.1007/s12369-022-00875-0

    Article  Google Scholar 

  • Fu, J., et al.: Recent advancements in augmented reality for robotic applications: a survey. Actuators 12(8), 323 (2023)

    Article  Google Scholar 

  • Fuchsman, P., et al.: Ecological risk analysis for benzalkonium chloride, benzethonium chloride, and chloroxylenol in US disinfecting and sanitizing products. Environ. Toxicol. Chem. 41(12), 3095–3115 (2022)

    Article  Google Scholar 

  • Fujita, T., Sasaki, T.: Development of hexapod tracked mobile robot and its hybrid locomotion with object-carrying. In: 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 69–73. IEEE (2017)

  • Garcia, M.P., Montiel, O., Castillo, O., Sepulveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9(3), 1102–1110 (2009)

    Article  Google Scholar 

  • Gemeinder, M., Gerke, M.: GA-based path planning for mobile robot systems employing an active search algorithm. Appl. Soft Comput. 3(2), 149–158 (2003)

    Article  Google Scholar 

  • Gielis, J., Shankar, A., Prorok, A.: A critical review of communications in multi-robot systems. Curr. Robot. Rep. 3(4), 213–225 (2022). https://doi.org/10.1007/s43154-022-00090-9

    Article  Google Scholar 

  • Gómez, E.J., Santa, F.M.M., Sarmiento, F.H.M.: A comparative study of geometric path planning methods for a mobile robot: potential field and voronoi diagrams. In: 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), pp. 1–6. IEEE (2013)

  • Guntur, S.R., Gorrepati, R.R., Dirisala, V.R.: Robotics in healthcare: an internet of medical robotic things (IoMRT) perspective. In: Machine Learning in Bio-signal Analysis and Diagnostic Imaging, pp. 293–318. Elsevier (2019)

  • Guo, S., Diao, Q., Xi, F.: Vision based navigation for omni-directional mobile industrial robot. Procedia Comput. Sci. 105, 20–26 (2017)

    Article  Google Scholar 

  • Harry, A.: The future of medicine: harnessing the power of AI for revolutionizing healthcare. Int. J. Multidiscip. Sci. Arts 2(1), 36–47 (2023)

    Google Scholar 

  • Hassan, S., Hannan, A., Khan, S., Abbas, S.: Androidbased UV-C disinfecting mobile unit. Pak. J. Eng. Technol. 4(1), 159–162 (2021)

    Google Scholar 

  • Holland, J., et al.: Service robots in the healthcare sector. Robotics 10(1), 47 (2021)

    Article  Google Scholar 

  • Hong, B., Huang, Y., Chen, C.-Y., Wu, P.-C., Chen, W.-C.: Fuzzy neural network based RFID positioning and navigation method for mobile robots, 2013-07-05T00:00:00Z (2013). https://doi.org/10.19026/RJASET.6.3937

  • Huang, R., Li, H., Suomi, R., Li, C., Peltoniemi, T.: Intelligent physical robots in health care: systematic literature review. J. Med. Internet Res. 25, e39786 (2023). https://doi.org/10.2196/39786

    Article  Google Scholar 

  • Hurst, N., Clabaugh, C., Baynes, R., Cohn, J., Mitroff, D., Scherer, S.: Social and emotional skills training with embodied moxie. arXiv preprint http://arxiv.org/abs/2004.12962 (2020)

  • Hussain, K. et al.: Internet of things—cloud security automation technology based on artificial intelligence. In: 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2022-05-09T00:00:00Z (2022). https://doi.org/10.1109/ICAAIC53929.2022.9792664

  • Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artif. Intell. 247, 10–44 (2017). https://doi.org/10.1016/j.artint.2014.11.003

    Article  MathSciNet  Google Scholar 

  • Javaid, M., Haleem, A., Singh, R.P., Suman, R.: Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cogn. Robot. 1, 58–75 (2021). https://doi.org/10.1016/j.cogr.2021.06.001

    Article  Google Scholar 

  • Joseph, A., Christian, B., Abiodun, A.A., Oyawale, F.: A review on humanoid robotics in healthcare. In: MATEC Web of Conferences, vol. 153, p. 02004. EDP Sciences (2018)

  • Junaid, S.B., et al.: Recent advancements in emerging technologies for healthcare management systems: a survey. Healthcare (Basel, Switzerland) (2022). https://doi.org/10.3390/healthcare10101940

    Article  Google Scholar 

  • Kahn, G., Abbeel, P., Levine, S.: Badgr: an autonomous self-supervised learning-based navigation system. IEEE Robot. Autom. Lett. 6(2), 1312–1319 (2021)

    Article  Google Scholar 

  • Kala, R.: Rapidly exploring random graphs: motion planning of multiple mobile robots. Adv. Robot. 27(14), 1113–1122 (2013)

    Article  Google Scholar 

  • Kang, M., Lim, C., Lee, J., Choi, E., Lee, S.: Study on obstacle recognition for safe operation of IoT-based hospital logistics robots. J. Korea Internet Broadcast. Commun. Soc. 17(2), 141–146 (2017)

    Article  Google Scholar 

  • Kästner, L., Zhao, X., Shen, Z., Lambrecht, J.: Obstacle-Aware Waypoint Generation for Long-range Guidance of Deep-Reinforcement-Learning-based Navigation Approaches, arXiv, 2021-09-23T00:00:00Z (2021)

  • Kastner, L. et al.: A hybrid hierarchical navigation architecture for highly dynamic environments using time-space optimization, 2023-01-17T00:00:00Z (2023). https://doi.org/10.1109/SII55687.2023.10039321

  • Kelly, J.T., Campbell, K.L., Gong, E., Scuffham, P.: The internet of things: impact and implications for health care delivery. J. Med. Internet Res. 22(11), e20135 (2020). https://doi.org/10.2196/20135. (in English)

    Article  Google Scholar 

  • Khan, A.A., Bahrami, M., Anwar, Y.: A deep learning based autonomous mobile robotic assistive care giver. In: 2019 IEEE International Conference on E-health Networking, Application & Services (HealthCom), 2019-10-01T00:00:00Z (2019). https://doi.org/10.1109/HEALTHCOM46333.2019.9009600

  • Koh, W.Q., et al.: "Bridging gaps in the design and implementation of socially assistive technologies for dementia care: the role of occupational therapy. Disabil. Rehabil. Assist. Technol. (2022). https://doi.org/10.1080/17483107.2022.2111610

    Article  Google Scholar 

  • Kriegel, J., Rissbacher, C., Reckwitz, L., Tuttle-Weidinger, L.: The requirements and applications of autonomous mobile robotics (AMR) in hospitals from the perspective of nursing officers. Int. J. Healthc. Manag. (2021). https://doi.org/10.1080/20479700.2020.1870353

    Article  Google Scholar 

  • Kristoffersson, A., Coradeschi, S., Loutfi, A.: A review of mobile robotic telepresence. Adv. Hum. Comput. Interact. 2013, 3–3 (2013a)

    Article  Google Scholar 

  • Kristoffersson, A., Coradeschi, S., Loutfi, A.: A review of mobile robotic telepresence. Adv. Hum. Comput. Interact. (2013b). https://doi.org/10.1155/2013/902316

    Article  Google Scholar 

  • Kumar, B., Sharma, L., Wu, S.-L.: Job allocation schemes for mobile service robots in hospitals. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1323–1326. IEEE (2018)

  • Kumar, A., Jain, S., Kaushik, K., Krishnamurthi, R.: Patient-centric smart health-care systems for handling COVID-19 variants and future pandemics: technological review, research challenges, and future directions. In: The Internet of Medical Things: enabling technologies and emerging applications, 2021-12-31T00:00:00Z (2021). https://doi.org/10.1049/PBHE034E_CH10

  • Kyrarini, M., et al.: A survey of robots in healthcare. Technologies 9(1), 8 (2021)

    Article  Google Scholar 

  • Li, Z., Moran, P., Dong, Q., Shaw, R.J., Hauser, K.: Development of a tele-nursing mobile manipulator for remote care-giving in quarantine areas. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3581–3586. IEEE (2017)

  • Lonner, J.H., Zangrilli, J., Saini, S.: Emerging robotic technologies and innovations for hospital process improvement. In: Robotics in knee and hip arthroplasty: current concepts, techniques and emerging uses, pp. 233–243 (2019)

  • Luo, G., He, J., Lin, T., Wang, Y.: Development of intelligent old-age medical and health system based on data fusion. In: IACSIT International Journal of Engineering and Technology, 2023-05-01T00:00:00Z (2023). https://doi.org/10.7763/IJET.2023.V15.1222

  • Masehian, E., Amin-Naseri, M.: A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. J. Robot. Syst. 21(6), 275–300 (2004)

    Article  Google Scholar 

  • McGinn, C., et al.: Exploring the applicability of robot-assisted UV disinfection in radiology. Front. Robot. AI (2021). https://doi.org/10.3389/frobt.2020.590306. (in English)

    Article  Google Scholar 

  • Meghdari, A., et al.: Arash: a social robot buddy to support children with cancer in a hospital environment. Proc. Inst. Mech. Eng. [h] 232(6), 605–618 (2018)

    Article  Google Scholar 

  • Mettler, T., Sprenger, M., Winter, R.: Service robots in hospitals: new perspectives on niche evolution and technology affordances. Eur. J. Inf. Syst. 26(5), 451–468 (2017)

    Article  Google Scholar 

  • Miao, H., Tian, Y.-C.: Dynamic robot path planning using an enhanced simulated annealing approach. Appl. Math. Comput. 222, 420–437 (2013)

    Google Scholar 

  • Michaud, F. et al.: Telepresence robot for home care assistance. In: AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive Robotics, 2007-01-01T00:00:00Z (2007)

  • Mireles, C., Sanchez, M., Cruz-Ortiz, D., Salgado, I., Chairez, I.: Home-care nursing controlled mobile robot with vital signal monitoring. Med. Biol. Eng. Compu. 61(2), 399–420 (2023)

    Article  Google Scholar 

  • Mireles, C. et al.: Home-care nursing controlled mobile robot with vital signal monitoring 2022-11-29T00:00:00Z (2022). https://doi.org/10.1007/S11517-022-02712-Y

  • Mišeikis, J., et al.: Lio-a personal robot assistant for human-robot interaction and care applications. IEEE Robot. Autom. Lett. 5(4), 5339–5346 (2020)

    Article  Google Scholar 

  • Mohamad, I., Zhu, Y.: Vision-based control of a home companion robot 2016-01-01T00:00:00Z (2016)

  • Montaner, M.B., Ramirez-Serrano, A.: Fuzzy knowledge-based controller design for autonomous robot navigation. Expert Syst. Appl. 14(1–2), 179–186 (1998)

    Article  Google Scholar 

  • Neerincx, A., Hiwat, T., de Graaf, M.M.A.: Social robot for health check and entertainment in waiting room: child’s engagement and parent’s involvement, 2021-06-21T00:00:00Z (2021). https://doi.org/10.1145/3450614.3463413

  • Nguyen, M.S., Than, T.T., Do, T.N., Nguyen, H.N.: Design of elderly-assistant mobile servant robot. Indones. J. Electr. Eng. Comput. Sci. (2022). https://doi.org/10.11591/IJEECS.V26.I3.PP1338-1350

    Article  Google Scholar 

  • Ohneberg, C., et al.: Assistive robotic systems in nursing care: a scoping review. BMC Nurs. 22(1), 72 (2023). https://doi.org/10.1186/s12912-023-01230-y

    Article  Google Scholar 

  • Oommen, B., Iyengar, S., Rao, N., Kashyap, R.: Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE J. Robot. Autom. 3(6), 672–681 (1987)

    Article  Google Scholar 

  • Pandey, A.K., Gelin, R.: A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Autom. Mag. 25(3), 40–48 (2018)

    Article  Google Scholar 

  • Park, Y. et al.: Development and usability test of IoT-based mobile applications for persons with mild physical disabilities and their caregivers. In: 2022 19th International Conference on Ubiquitous Robots (UR) (2022). https://doi.org/10.1109/UR55393.2022.9826273

  • Patle, B., Pandey, A., Parhi, D., Jagadeesh, A.: A review: on path planning strategies for navigation of mobile robot. Def. Technol. 15(4), 582–606 (2019)

    Article  Google Scholar 

  • Paul, M., Maglaras, L., Ferrag, M.A., Almomani, I.: Digitization of healthcare sector: a study on privacy and security concerns. ICT Express 9(4), 571–588 (2023). https://doi.org/10.1016/j.icte.2023.02.007

    Article  Google Scholar 

  • Păvăloiu, I.-B., Vasilățeanu, A., Popa, R., Scurtu, D., Hang, A., Goga, N.: Healthcare robotic telepresence. In: 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–6. IEEE (2021)

  • Pequeño-Zurro, A., et al.: Proactive control for online individual user adaptation in a welfare robot guidance scenario: toward supporting elderly people. IEEE Trans. Syst. Man Cybern. Syst. (2023). https://doi.org/10.1109/TSMC.2022.3224366

    Article  Google Scholar 

  • Pinna, R., Carrus, P.P., Marras, F.: The drug logistics process: an innovative experience. The TQM Journal 27(2), 214–230 (2015)

    Article  Google Scholar 

  • Prathiba, A., et al.: Tele-robotic recommendation framework using multi-dimensional medical datasets on COVID-19 classification. Int. J. Adv. Appl. Sci. (2022). https://doi.org/10.21833/IJAAS.2022.02.017

    Article  Google Scholar 

  • Pudchuen, N., Inthiam, J., Jitviriya, W., Phunopas, A., Deelertpaiboon, C., Blattler, A.: Medical telerobotic: IRAPs SHaRE-aGIVeR, 2021-01-21T00:00:00Z (2021). https://doi.org/10.5954/ICAROB.2021.GS7-4

  • Raje, S., et al.: Applications of healthcare robots in combating the COVID-19 pandemic. Appl. Bionics Biomech. 2021, 1–9 (2021). https://doi.org/10.1155/2021/7099510

    Article  Google Scholar 

  • Rao, N.S., Iyengar, S., de Saussure, G.: The visit problem: visibility graph-based solution. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 1650–1655. IEEE (1988)

  • Ratta, P., Kaur, A., Sharma, S., Shabaz, M., Dhiman, G.: Application of blockchain and internet of things in healthcare and medical sector: applications, challenges, and future perspectives. J. Food Qual. 2021, 7608296 (2021). https://doi.org/10.1155/2021/7608296

    Article  Google Scholar 

  • Rejeb, A., et al.: The Internet of Things (IoT) in healthcare: taking stock and moving forward. Internet Things 22, 100721 (2023). https://doi.org/10.1016/j.iot.2023.100721

    Article  Google Scholar 

  • Richert, A., Schiffmann, M., Yuan, C.: A nursing robot for social interactions and health assessment. Adv. Intell. Syst. Comput. (2019). https://doi.org/10.1007/978-3-030-20467-9_8

    Article  Google Scholar 

  • Rohini, S., Sneha, C., Varshitha, S., Yashodha, G., Rohith, H., Bhagya, M.:An Automated External Defibrillator in Robotics Ambulance (2019)

  • Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts methods theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16(2), 1729881419839596 (2019). https://doi.org/10.1177/1729881419839596

    Article  Google Scholar 

  • Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16, 172988141983959 (2019). https://doi.org/10.1177/1729881419839596

    Article  Google Scholar 

  • Samani, H., Zhu, R.: Robotic automated external defibrillator ambulance for emergency medical service in smart cities. IEEE Access 4, 268–283 (2016)

    Article  Google Scholar 

  • Schulz, A.P., et al.: Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int. J. Med. Robot. Comput. Assist. Surg. 3(4), 301–306 (2007)

    Article  Google Scholar 

  • Shabbir, J., Anwer, T.: A survey of deep learning techniques for mobile robot applications. arXiv preprint https://arxiv.org/abs/1803.07608 (2018)

  • Shahri, S.M.Z., Sayyedalhosseini, S.: Use of medical micro and nano robots in telemedicine in COVID-19, 2021-01-01T00:00:00Z (2021)

  • Shao, M., Lee, J.Y.: Development of autonomous navigation method for nonholonomic mobile robots based on the generalized Voronoi diagram. In: ICCAS 2010, pp. 309–313. IEEE (2010)

  • Shin, M.H., McLaren, J., Ramsey, A., Sullivan, J.L., Moo, L.: Improving a mobile telepresence robot for people with Alzheimer disease and related dementias: semistructured interviews with stakeholders. JMIR Aging (2022). https://doi.org/10.2196/32322

    Article  Google Scholar 

  • Siala, H., Wang, Y.: SHIFTing artificial intelligence to be responsible in healthcare: a systematic review. Soc. Sci. Med. 296, 114782 (2022). https://doi.org/10.1016/j.socscimed.2022.114782

    Article  Google Scholar 

  • Smith, M.W., Rahn, K.A., Shugart, R.M., Belschner, C.D., Stout, K.S., Cheng, I.: Comparison of perioperative parameters and complications observed in the anterior exposure of the lumbar spine by a spine surgeon with and without the assistance of an access surgeon. Spine J. 11(5), 389–394 (2011)

    Article  Google Scholar 

  • Soriano, G.P., et al.: Robots and robotics in nursing. Healthcare (Basel, Switzerland) (2022). https://doi.org/10.3390/healthcare10081571. (in English)

    Article  Google Scholar 

  • Stoumpos, A.I., Kitsios, F., Talias, M.A.: Digital transformation in healthcare: technology acceptance and its applications. Int. J. Environ. Res. Public Health (2023). https://doi.org/10.3390/ijerph20043407. (in English)

    Article  Google Scholar 

  • Sunny, M.S.H., Hossain, E., Mimma, T.N., Hossain, S.: An autonomous robot: using ANN to navigate in a static path. In: 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), pp. 291–296. IEEE (2017)

  • Tan, S.Y., Taeihagh, A., Tripathi, A.: Tensions and antagonistic interactions of risks and ethics of using robotics and autonomous systems in long-term care. Technol. Forecast. Soc. Change 167, 120686 (2021). https://doi.org/10.1016/j.techfore.2021.120686

    Article  Google Scholar 

  • Tomlinson, Z., Tomlinson, Z.: Medical robots that are changing the world. October 11, 2018 (2018)

    Google Scholar 

  • Xuan, K., Zhao, G., Taniar, D., Safar, M., Srinivasan, B.: Voronoi-based multi-level range search in mobile navigation. Multimed. Tools Appl. 53(2), 459–479 (2011)

    Article  Google Scholar 

  • Yew, G.C.K.: Trust in and ethical design of carebots: the case for ethics of care. Int. J. Soc. Robot. 13(4), 629–645 (2021). https://doi.org/10.1007/s12369-020-00653-w

    Article  Google Scholar 

  • Yudha, H.M., Dewi, T., Hasana, N., Risma, P., Oktarini, Y., Kartini, S.: Performance comparison of fuzzy logic and neural network design for mobile robot navigation. In: 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), pp. 79–84. IEEE (2019)

  • Zardiashvili, L., Fosch-Villaronga, E.: Oh, dignity too?” Said the robot: human dignity as the basis for the governance of robotics. Mind. Mach. 30(1), 121–143 (2020)

    Article  Google Scholar 

  • Zeadally, S., Siddiqui, F., Baig, Z., Ibrahim, A.: Smart healthcare. PSU Res. Rev. 4(2), 149–168 (2020). https://doi.org/10.1108/PRR-08-2019-0027

    Article  Google Scholar 

  • Zeng, Z., Chen, P.-J., Lew, A.A.: From high-touch to high-tech: COVID-19 drives robotics adoption. Tour. Geogr. 22(3), 724–734 (2020)

    Article  Google Scholar 

  • Zhou, F., Wang, X., Goh, M.: Fuzzy extended VIKOR-based mobile robot selection model for hospital pharmacy. Int. J. Adv. Rob. Syst. 15(4), 1729881418787315 (2018)

    Google Scholar 

  • Zhu, A., Yang, S.X.: Neurofuzzy-based approach to mobile robot navigation in unknown environments. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(4), 610–621 (2007)

    Article  Google Scholar 

  • Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: a review. Tsinghua Sci. Technol. 26(5), 674–691 (2021)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

The individual contributions of this research review are as follows; “Conceptualization, methodology, validation, supervision, original draft preparation writing and review GAK; mobile robot assessments, AAG; classification of sensor systems, mobile robot applications, project review administration, HA, investigation, resources, data curation, writing—original draft preparation writing—review and editing, ATH. All authors have read and agreed to the published version of the manuscript”.

Corresponding author

Correspondence to Assefa Tesfaye Hailu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebede, G.A., Gelaw, A.A., Andualem, H. et al. Review of the characteristics of mobile robots for health care application. Int J Intell Robot Appl (2024). https://doi.org/10.1007/s41315-024-00324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41315-024-00324-3

Keywords

Navigation