Skip to main content
Log in

Nonlocal stress-driven model for functionally graded Mindlin annular plate: bending and vibration analysis

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study provides the axisymmetric static and free vibration analysis of moderately thick functionally graded annular nano-plates with different boundary conditions. The displacement components are assumed based on the Mindlin plate approximation. Further, to reflect the small-scale effects, stress-driven nonlocal elasticity is employed. The bending analysis of nano-plates under uniformly distributed loads and natural frequencies of the plate are obtained by implementing a finite element method. The effect of small scales on transversal displacements and the frequencies of the plate is investigated for different parameters, such as material properties, plate aspect ratios, and different boundary conditions. Finally, the nonlocal stress-driven theory based on the Mindlin and Kirchhoff assumptions is compared. It is observed that the Mindlin model demonstrates more capability in detecting the nonlocal effects when the characteristic parameter takes small values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Nonlocal theory.

  2. Local theory.

References

  1. Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D., Ma, A.: 30 years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos. B Eng. 201, 108376 (2020)

    Article  Google Scholar 

  2. Chen, D., Gao, K., Yang, J., Zhang, L.: Functionally graded porous structures: analyses, performances, and applications-a review. Thin-Walled Struct. 191, 111046 (2023)

    Article  Google Scholar 

  3. El-Galy, I.M., Saleh, B.I., Ahmed, M.H.: Functionally graded materials classifications and development trends from industrial point of view. SN Appl. Sci. 1, 1–23 (2019)

    Article  Google Scholar 

  4. Shaat, M., Ghavanloo, E., Fazelzadeh, S.A.: Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587 (2020)

    Article  Google Scholar 

  5. Roudbari, M.A., Jorshari, T.D., Lü, C., Ansari, R., Kouzani, A.Z., Amabili, M.: A review of size-dependent continuum mechanics models for micro-and nano-structures. Thin-Walled Struct. 170, 108562 (2022)

    Article  Google Scholar 

  6. Ke, L.-L., Yang, J., Kitipornchai, S., Bradford, M.A.: Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos. Struct. 94(11), 3250–3257 (2012)

    Article  Google Scholar 

  7. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Sahmani, S.: Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur. J. Mech. A/Solids 49, 251–267 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dang, V.-H., Do, Q.-C.: Nonlinear vibration and stability of functionally graded porous microbeam under electrostatic actuation. Arch. Appl. Mech. 91(5), 2301–2329 (2021)

    Article  Google Scholar 

  9. Zhou, S.-S., Gao, X.-L.: A nonclassical model for circular Mindlin plates based on a modified couple stress theory. J. Appl. Mech. 81(5), 051014 (2014)

    Article  Google Scholar 

  10. Ashoori, A., Vanini, S.S.: Nonlinear bending, postbuckling and snap-through of circular size-dependent functionally graded piezoelectric plates. Thin-Walled Struct. 111, 19–28 (2017)

    Article  Google Scholar 

  11. Karamanli, A., Eltaher, M.A., Thai, S., Vo, T.P.: Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model. Eng. Struct. 278, 115566 (2023)

    Article  Google Scholar 

  12. Gousias, N., Lazopoulos, A.: Axisymmetric bending of strain gradient elastic circular thin plates. Arch. Appl. Mech. 85(11), 1719–1731 (2015)

    Article  Google Scholar 

  13. Zhang, P., Schiavone, P., Qing, H.: Nonlocal gradient integral models with a bi-Helmholtz averaging kernel for functionally graded beams. Appl. Math. Model. 107, 740–763 (2022)

    Article  MathSciNet  Google Scholar 

  14. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  15. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  16. Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M., Penna, R.: Free vibrations of Bernoulli–Euler nano-beams by the stress-driven nonlocal integral model. Compos. B Eng. 123, 105–111 (2017)

    Article  Google Scholar 

  17. Mahmoudpour, E., Hosseini-Hashemi, S., Faghidian, S.: Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model. 57, 302–315 (2018)

    Article  MathSciNet  Google Scholar 

  18. Barretta, R., Luciano, R., de Sciarra, F.M., Ruta, G.: Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A/Solids 72, 275–286 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ouakad, H.M., Valipour, A., Żur, K.K., Sedighi, H.M., Reddy, J.N.: On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity. Mech. Mater. 148, 103532 (2020)

    Article  Google Scholar 

  20. Bian, P.-L., Qing, H., Gao, C.-F.: One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: close form solution and consistent size effect. Appl. Math. Model. 89, 400–412 (2021)

    Article  MathSciNet  Google Scholar 

  21. Pinnola, F.P., Vaccaro, M.S., Barretta, R., Marotti de Sciarra, F.: Random vibrations of stress-driven nonlocal beams with external damping. Meccanica 56, 1329–1344 (2021)

    Article  MathSciNet  Google Scholar 

  22. Qing, H., Cai, Y.: Semi-analytical and numerical post-buckling analysis of nanobeam using two-phase nonlocal integral models. Arch. Appl. Mech. 93(1), 129–149 (2023)

    Article  Google Scholar 

  23. Mahmoudpour, E., Esmaeili, M.: Nonlinear free and forced vibration of carbon nanotubes conveying magnetic nanoflow and subjected to a longitudinal magnetic field using stress-driven nonlocal integral model. Thin-Walled Struct. 166, 108134 (2021)

    Article  Google Scholar 

  24. Penna, R., Feo, L., Fortunato, A., Luciano, R.: Nonlinear free vibrations analysis of geometrically imperfect FG nano-beams based on stress-driven nonlocal elasticity with initial pretension force. Compos. Struct. 255, 112856 (2021)

    Article  Google Scholar 

  25. Zhang, P., Qing, H., Gao, C.-F.: Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 245, 112362 (2020)

    Article  Google Scholar 

  26. Caporale, A., Luciano, R., Scorza, D., Vantadori, S.: Local-nonlocal stress-driven model for multi-cracked nanobeams. Int. J. Solids Struct. 273, 112230 (2023)

    Article  Google Scholar 

  27. Jafarinezhad, M., Sburlati, R., Cianci, R.: Static and free vibration analysis of functionally graded annular plates using stress-driven nonlocal theory. Eur. J. Mech. A/Solids 99, 104955 (2023)

    Article  MathSciNet  Google Scholar 

  28. Jha, D., Kant, T., Singh, R.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  29. Sburlati, R., Atashipour, S.R., Atashipour, S.A.: Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer. Compos. B Eng. 61, 99–109 (2014)

    Article  Google Scholar 

  30. Mindlin, R.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    Article  Google Scholar 

  31. Wittrick, W.: Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin’s plate theory. Int. J. Solids Struct. 23(4), 441–464 (1987)

    Article  Google Scholar 

  32. Jafarinezhad, M., Eslami, M.: Coupled thermoelasticity of FGM annular plate under lateral thermal shock. Compos. Struct. 168, 758–771 (2017)

    Article  Google Scholar 

  33. Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131, 490–499 (2017)

    Article  Google Scholar 

  34. Barretta, R., Faghidian, S.A., De Sciarra, F.M.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019)

    Article  MathSciNet  Google Scholar 

  35. Eslami, M.R.: Finite Elements Methods in Mechanics. Springer, Berlin (2014)

    Book  Google Scholar 

  36. Reddy, J., Wang, C., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur J Mech A/Solids 18(2), 185–199 (1999)

    Article  Google Scholar 

  37. Irie, T., Yamada, G., Takagi, K.: Natural frequencies of thick annular plates. J. Appl. Mech. 49(3), 633–638 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Jafarinezhad.

Ethics declarations

Funding and Conflict of interest

No funding was received for conducting this study, and the authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Nonzero arrays of Eq. 39:

(A.1a)
(A.1b)
(A.1c)
(A.1d)

Appendix B

For the axisymmetric bending analysis of the plate with Mindlin’s assumptions, Eqs. 33, 34, and 35 can be reduced to the following equations, respectively.

$$\begin{aligned} \begin{aligned} W^{\left( e\right) } = \left\langle N_{d}\right\rangle ^{\left( e\right) }\left\{ W_{d}\right\} ^{\left( e\right) } \mid _{d=1,2}, \ \ \Phi ^{\left( e\right) }&= \left\langle N_{d}\right\rangle ^{\left( e\right) }\left\{ \Phi _{d}\right\} ^{\left( e\right) } \mid _{d=1,2} \end{aligned} \end{aligned}$$
(B.1)
$$\begin{aligned} \begin{aligned}&\left\{ W_{d}\right\} ^{\left( e\right) }= \left\{ {\begin{aligned}{} W_i \\ W_j \end{aligned}}\right\} _{2 \times 1}, \ \ {}&\left\{ \Phi _{d}\right\} ^{\left( e\right) }= \left\{ {\begin{aligned}{} \Phi _i \\ \Phi _j \end{aligned}}\right\} _{2 \times 1} \end{aligned} \end{aligned}$$
(B.2)
$$\begin{aligned} \begin{aligned}&N_{1}= 1- \dfrac{R}{L}, \ \ N_{2}= \dfrac{R}{L} \end{aligned} \end{aligned}$$
(B.3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarinezhad, M., Sburlati, R. & Cianci, R. Nonlocal stress-driven model for functionally graded Mindlin annular plate: bending and vibration analysis. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02577-7

Keywords

Navigation