Skip to main content

Advertisement

Log in

Systemic Inflammatory Regulators Associated with Osteoporosis: A Bidirectional Mendelian Randomization Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To elucidate the precise upstream and downstream regulatory mechanisms of inflammatory factors in osteoporosis (OP) progression and to establish a causal relationship between inflammatory factors and OP. We conducted bidirectional Mendelian randomization (MR) analyses using data for 41 cytokines obtained from three independent cohorts comprising 8293 Finnish individuals. Estimated bone mineral density (eBMD) data were derived from 426,824 UK Biobank White British individuals (55% female) and fracture data from 416,795 UK Biobank participants of European ancestry. The inverse variance-weighted method was the primary MR analysis approach. We employed other methods as complementary approaches for mutual corroboration. To test for pleiotropy and heterogeneity, we used the MR-Egger regression, MR-pleiotropy residual sum and outlier global test, and the Cochrane Q test. Macrophage inflammatory protein (MIP)-1α and interleukin (IL)-12p70 expression associated negatively and causally with eBMD (β = −0.017 [MIP-1α], β = −0.011 [IL-12p70]). Conversely, tumor necrosis factor-related apoptosis-inducing ligand was associated with a decreased risk of fractures (Odds Ratio: 0.980). Additionally, OP influenced the expression of multiple inflammatory factors, including growth-regulated oncogene-α, interferon-gamma, IL-6, beta nerve growth factor, and IL-2. Finally, we discovered complex bidirectional causal relationships between IL-8, IL-10, and OP. Specific inflammatory factors may contribute to OP development or may be causally affected by OP. We identified a bidirectional causal relationship between certain inflammatory factors and OP. These findings provide new perspectives for early prediction and targeted treatment of OP. Larger cohort studies are necessary in the future to further validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  2. Zhang C, Feng J, Wang S et al (2020) Incidence of and trends in hip fracture among adults in urban China: a nationwide retrospective cohort study. PLoS Med 17:e1003180. https://doi.org/10.1371/journal.pmed.1003180

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381. https://doi.org/10.1007/BF01622200

  4. Iantomasi T, Romagnoli C, Palmini G et al (2023) Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci. https://doi.org/10.3390/ijms24043772

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu J, Yu L, Liu F, Wan L, Deng Z (2023) The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 14:1222129. https://doi.org/10.3389/fimmu.2023.1222129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Jiang J, Qin Y et al (2023) Systemic immune-inflammation index is associated with decreased bone mass density and osteoporosis in postmenopausal women but not in premenopausal women. Endocr Connect. https://doi.org/10.1530/EC-22-0461

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fischer V, Haffner-Luntzer M (2022) Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol 123:14–21. https://doi.org/10.1016/j.semcdb.2021.05.014

    Article  PubMed  Google Scholar 

  8. Soh GT, Mohammad AH, Syed Isa SNL, Chin KY, Mohamed N (2023) Comparison of cytokine profile between postmenopausal women with and without osteoporosis—a case-control study. Endocr Metab Immune Disord Drug Targets 23:811–817. https://doi.org/10.2174/1871530323666221114111029

    Article  CAS  PubMed  Google Scholar 

  9. Ma X, Zhu X, He X, Yi X, Jin A (2021) The Wnt pathway regulator expression levels and their relationship to bone metabolism in thoracolumbar osteoporotic vertebral compression fracture patients. Am J Transl Res 13:4812–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebrahim S, Davey Smith G (2008) Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet 123:15–33. https://doi.org/10.1007/s00439-007-0448-6

    Article  PubMed  Google Scholar 

  11. Liu B, Lyu L, Zhou W et al (2023) Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: a Mendelian randomization study. BMC Med 21:39. https://doi.org/10.1186/s12916-023-02736-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Q, Wang Q, Wang Z, Lu J, Wang R (2023) Systemic inflammatory regulators and proliferative diabetic retinopathy: a bidirectional Mendelian randomization study. Front Immunol 14:1088778. https://doi.org/10.3389/fimmu.2023.1088778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahola-Olli AV, Wurtz P, Havulinna AS et al (2017) Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet 100:40–50. https://doi.org/10.1016/j.ajhg.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  14. Medina-Gomez C, Kemp JP, Trajanoska K et al (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102:88–102. https://doi.org/10.1016/j.ajhg.2017.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morris JA, Kemp JP, Youlten SE et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51:258–266. https://doi.org/10.1038/s41588-018-0302-x

    Article  CAS  PubMed  Google Scholar 

  16. Bowden J, Del Greco MF, Minelli C et al (2016) Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol 45:1961–1974. https://doi.org/10.1093/ije/dyw220

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bowden J, Del Greco MF, Minelli C et al (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36:1783–1802. https://doi.org/10.1002/sim.7221

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verbanck M, Chen CY, Neale B, Do R (2018) Publisher correction: detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:1196. https://doi.org/10.1038/s41588-018-0164-2

    Article  CAS  PubMed  Google Scholar 

  20. Huang JV, Schooling CM (2017) Inflammation and bone mineral density: a Mendelian randomization study. Sci Rep 7:8666. https://doi.org/10.1038/s41598-017-09080-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kasher M, Williams FMK, Freidin MB et al (2022) Understanding the complex genetic architecture connecting rheumatoid arthritis, osteoporosis and inflammation: discovering causal pathways. Hum Mol Genet 31:2810–2819. https://doi.org/10.1093/hmg/ddac061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith SL, Alexander S, Nair N et al (2023) Pre-treatment calprotectin (MRP8/14) provides no added value to testing CRP alone in terms of predicting response to TNF inhibitors in rheumatoid arthritis in a post hoc analysis. Ann Rheum Dis 82:611–620. https://doi.org/10.1136/ard-2022-222519

    Article  CAS  PubMed  Google Scholar 

  23. Wan H, Qian TY, Hu XJ, Huang CY, Yao WF (2018) Correlation of serum CCL3/MIP-1alpha levels with disease severity in postmenopausal osteoporotic females. Balkan Med J 35:320–325. https://doi.org/10.4274/balkanmedj.2017.1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu R, Liu H, Zhao S et al (2014) Osteoblast inhibition by chemokine cytokine ligand3 in myeloma-induced bone disease. Cancer Cell Int 14:132. https://doi.org/10.1186/s12935-014-0132-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu D, Zhang S, Ma C et al (2023) CCL3 in the bone marrow microenvironment causes bone loss and bone marrow adiposity in aged mice. JCI Insight. https://doi.org/10.1172/jci.insight.159107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawao N, Tamura Y, Horiuchi Y et al (2015) The tissue fibrinolytic system contributes to the induction of macrophage function and CCL3 during bone repair in mice. PLoS ONE 10:e0123982. https://doi.org/10.1371/journal.pone.0123982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682. https://doi.org/10.1016/1074-7613(95)90057-8

    Article  CAS  PubMed  Google Scholar 

  28. Faienza MF, D’Amato G, Chiarito M et al (2019) Mechanisms involved in childhood obesity-related bone fragility. Front Endocrinol (Lausanne) 10:269. https://doi.org/10.3389/fendo.2019.00269

    Article  PubMed  Google Scholar 

  29. Li J, Li X, Zhou S et al (2022) Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting the degradation of TRAIL. Mol Med 28:141. https://doi.org/10.1186/s10020-022-00568-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao HJ, Tsai HF, Wu CS, Chyuan IT, Hsu PN (2019) TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment. Cell Death Dis 10:77. https://doi.org/10.1038/s41419-019-1353-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng J, Wang X, Yu J, Zhan Z, Guo Z (2022) IL-6, TNF-alpha and IL-12p70 levels in patients with colorectal cancer and their predictive value in anti-vascular therapy. Front Oncol 12:997665. https://doi.org/10.3389/fonc.2022.997665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huan X, Zhao R, Song J et al (2022) Increased serum IL-2, IL-4, IL-5 and IL-12p70 levels in AChR subtype generalized myasthenia gravis. BMC Immunol 23:26. https://doi.org/10.1186/s12865-022-00501-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B et al (2019) Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. Immun Ageing 16:15. https://doi.org/10.1186/s12979-019-0155-x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vignali DA, Kuchroo VK (2012) IL-12 family cytokines: immunological playmakers. Nat Immunol 13:722–728. https://doi.org/10.1038/ni.2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang M, Tian L, Luo G, Yu X (2018) Interferon-gamma-mediated osteoimmunology. Front Immunol 9:1508. https://doi.org/10.3389/fimmu.2018.01508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang W, Zhao W, Li W et al (2022) The imbalance of cytokines and lower levels of tregs in elderly male primary osteoporosis. Front Endocrinol (Lausanne) 13:779264. https://doi.org/10.3389/fendo.2022.779264

    Article  PubMed  Google Scholar 

  37. Rama TA, Henriques AF, Matito A et al (2023) Bone and cytokine markers associated with bone disease in systemic mastocytosis. J Allergy Clin Immunol Pract 11:1536–1547. https://doi.org/10.1016/j.jaip.2023.02.007

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka K, Yamagata K, Kubo S et al (2019) Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone 128:115034. https://doi.org/10.1016/j.bone.2019.115034

    Article  CAS  PubMed  Google Scholar 

  39. Yi L, Li Z, Jiang H et al (2018) Gene modification of transforming growth factor beta (TGF-beta) and interleukin 10 (IL-10) in suppressing Mt Sonicate induced osteoclast formation and bone absorption. Med Sci Monit 24:5200–5207. https://doi.org/10.12659/MSM.909720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujioka K, Kishida T, Ejima A et al (2015) Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10. Biochem Biophys Res Commun 456:785–791. https://doi.org/10.1016/j.bbrc.2014.12.040

    Article  CAS  PubMed  Google Scholar 

  41. Sapra L, Bhardwaj A, Mishra PK et al (2021) Regulatory B cells (Bregs) inhibit osteoclastogenesis and play a potential role in ameliorating ovariectomy-induced bone loss. Front Immunol 12:691081. https://doi.org/10.3389/fimmu.2021.691081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Damani JJ, De Souza MJ, Strock NCA et al (2023) Associations between inflammatory mediators and bone outcomes in postmenopausal women: a cross-sectional analysis of baseline data from the prune study. J Inflamm Res 16:639–663. https://doi.org/10.2147/JIR.S397837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu Y, Wang L, Zhao Z et al (2020) Cytokines CCL2 and CXCL1 may be potential novel predictors of early bone loss. Mol Med Rep 22:4716–4724. https://doi.org/10.3892/mmr.2020.11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu S, Li J, Zhang M (2023) Determination of immune factor levels in serum and local hematoma samples of osteoporotic fracture patients and clinical study of the effect of active vitamin D3 treatment on immune factor levels. J Orthop Surg Res 18:291. https://doi.org/10.1186/s13018-023-03777-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all genetics consortiums for opening up the genome-wide association studies (GWAS) summary data.

Funding

This research is supported by Shanxi Province Science and Technology Research Project (Grant Number 20150313004–6) and Shanxi Province Science and Technology Cooperation and Exchange Special Project (Grant Number 202204041101027).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript writing: LX and HS; data collection and collation: BL and HL; statistical analysis: LX and XH; methodological quality assessment: HS and XH; key revisions of important knowledge content: LX and HS; all authors accepted the final version.

Corresponding author

Correspondence to Haibiao Sun.

Ethics declarations

Conflict of interests

Lei Xu, Hui Li, Bin Liu, Xiaoqiang Han, Haibiao Sun declare that they have no conflict of interest.

Informed Consent

All data were derived from published studies or publicly available GWAS abstract data in which ethical approval and informed consent were provided. No separate ethical approval was required for this study.

Research Involved in Human and Animal Participants

All data were derived from published studies or publicly available GWAS abstract data in which ethical approval and informed consent were provided. No separate ethical approval was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Li, H., Liu, B. et al. Systemic Inflammatory Regulators Associated with Osteoporosis: A Bidirectional Mendelian Randomization Study. Calcif Tissue Int 114, 490–501 (2024). https://doi.org/10.1007/s00223-024-01200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-024-01200-9

Keywords

Navigation