Skip to main content
Log in

A generalized fuzzy barycentric Lagrange interpolation method for solving two-dimensional fuzzy fractional Volterra integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a generalized fuzzy barycentric Lagrange interpolation method is proposed to solve two-dimensional fuzzy fractional Volterra integral equations. Firstly, we use the generalized Gronwall inequality and iterative methods to demonstrate the existence and uniqueness of solutions to the original equation. Secondly, combining the generalized fuzzy interpolation method and the fuzzy Gauss-Jacobi quadrature formula to discretize the original equation into corresponding algebraic equations in fuzzy environment. Then, the convergence of the proposed method is analyzed, and an error estimate is given based on the uniform continuity modulus. Finally, some numerical experiments show that the proposed method has high numerical accuracy for both smooth and non-smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Agarwal, R.P., Arshad, S., O’Regan, D., Lupulescu, V.: Fuzzy fractional integral equations under compactness type condition. Fract. Calc. Appl. Anal. 15(4), 572–590 (2012)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Baleanu, D., Nieto, J.J., Torres, D.F., Zhou, Y.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 339, 3–29 (2018)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72(6), 2859–2862 (2010)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1), 323–337 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ahmad, N., Ullah, A., Ullah, A., Ahmad, S., Shah, K., Ahmad, I.: On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation. Alex. Eng. J. 60(1), 1827–1838 (2021)

    Article  Google Scholar 

  6. Ahmad, S., Ullah, A., Shah, K., Salahshour, S., Ahmadian, A., Ciano, T.: Fuzzy fractional-order model of the novel coronavirus. Adv. Differ. Equ. 2020(1), 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  7. Ahmadian, A., Ismail, F., Salahshour, S., Baleanu, D., Ghaemi, F.: Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution. Commun. Nonlinear Sci. Numer. Simul. 53, 44–64 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ahmadian, A., Salahshour, S., Baleanu, D., Amirkhani, H., Yunus, R.: Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. J. Comput. Phys. 294, 562–584 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ahmadian, A., Salahshour, S., Chan, C.S.: Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications. IEEE T. Fuzzy Syst. 25(1), 218–236 (2016)

    Article  Google Scholar 

  10. Ahmadian, A., Suleiman, M., Salahshour, S., Baleanu, D.: A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Adv. Differ. Equ. 2013(1), 1–29 (2013)

    Article  MathSciNet  Google Scholar 

  11. Alderremy, A., Gómez-Aguilar, J., Aly, S., Saad, K.M.: A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method. Results Phys. 21, 103773 (2021)

    Article  Google Scholar 

  12. Alijani, Z., Baleanu, D., Shiri, B., Wu, G.C.: Spline collocation methods for systems of fuzzy fractional differential equations. Chaos Soliton. Fract. 131, 109510 (2020)

    Article  MathSciNet  Google Scholar 

  13. Alikhani, R., Bahrami, F.: Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2007–2017 (2013)

    Article  MathSciNet  Google Scholar 

  14. Allahviranloo, T., Armand, A., Gouyandeh, Z.: Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 26(3), 1481–1490 (2014)

    Article  MathSciNet  Google Scholar 

  15. Arshad, S., Lupulescu, V.: On the fractional differential equations with uncertainty. Nonlinear Anal. 74(11), 3685–3693 (2011)

    Article  MathSciNet  Google Scholar 

  16. Azhar, N., Iqbal, S.: Solution of fuzzy fractional order differential equations by fractional Mellin transform method. J. Comput. Appl. Math. 400, 113727 (2022)

    Article  MathSciNet  Google Scholar 

  17. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1), 249–267 (2015)

    Article  MathSciNet  Google Scholar 

  18. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  19. Bica, A.M.: Algebraic structures for fuzzy numbers from categorial point of view. Soft Comput. 11, 1099–1105 (2007)

    Article  Google Scholar 

  20. Bica, A.M., Ziari, S., Satmari, Z.: An iterative method for solving linear fuzzy fractional integral equation. Soft Comput. 26(13), 6051–6062 (2022)

    Article  Google Scholar 

  21. Bidari, A., Saei, F.D., Baghmisheh, M., Allahviranloo, T.: A new Jacobi Tau method for fuzzy fractional Fredholm nonlinear integro-differential equations. Soft Comput. 25(8), 5855–5865 (2021)

    Article  Google Scholar 

  22. Dehghan, M., Hamedi, E.A., Khosravian-Arab, H.: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. J. Vib. Control 22(6), 1547–1559 (2016)

    Article  MathSciNet  Google Scholar 

  23. Deng, T., Huang, J., Wen, X., Liu, H.: Discrete collocation method for solving two-dimensional linear and nonlinear fuzzy Volterra integral equations. Appl. Numer. Math. 171, 389–407 (2022)

    Article  MathSciNet  Google Scholar 

  24. Dong, N.P., Long, H.V., Giang, N.L.: The fuzzy fractional SIQR model of computer virus propagation in wireless sensor network using Caputo Atangana-Baleanu derivatives. Fuzzy Sets Syst. 429, 28–59 (2022)

    Article  MathSciNet  Google Scholar 

  25. Hanyga, A.: Wave propagation in media with singular memory. Mathe. Comput. Model. 34(12–13), 1399–1421 (2001)

    Article  MathSciNet  Google Scholar 

  26. Hou, D., Lin, Y., Azaiez, M., Xu, C.: A müntz-collocation spectral method for weakly singular Volterra integral equations. J. Sci. Comput. 81(3), 2162–2187 (2019)

    Article  MathSciNet  Google Scholar 

  27. Keshavarz, M., Allahviranloo, T.: Fuzzy fractional diffusion processes and drug release. Fuzzy Sets Syst. 436, 82–101 (2022)

    Article  MathSciNet  Google Scholar 

  28. Keshavarz, M., Qahremani, E., Allahviranloo, T.: Solving a fuzzy fractional diffusion model for cancer tumor by using fuzzy transforms. Fuzzy Sets Syst. 443, 198–220 (2022)

    Article  MathSciNet  Google Scholar 

  29. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)

    Article  Google Scholar 

  30. Kumar, S., Gupta, V.: An application of variational iteration method for solving fuzzy time-fractional diffusion equations. Neural Comput. Appl. 33, 17659–17668 (2021)

    Article  Google Scholar 

  31. Kumar, S., Gupta, V.: An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations. J. Appl. Math. Comput. 69(1), 251–272 (2023)

    Article  MathSciNet  Google Scholar 

  32. Kumar, S., Nieto, J.J., Ahmad, B.: Chebyshev spectral method for solving fuzzy fractional Fredholm-Volterra integro-differential equation. Math. Comput. Simul. 192, 501–513 (2022)

    Article  MathSciNet  Google Scholar 

  33. Ma, Z., Huang, C.: An hp-version fractional collocation method for Volterra integro-differential equations with weakly singular kernels. Numer. Algorithms 92(4), 2377–2404 (2023)

    Article  MathSciNet  Google Scholar 

  34. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  35. Mazandarani, M., Kamyad, A.V.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18(1), 12–21 (2013)

    Article  MathSciNet  Google Scholar 

  36. Moi, S., Biswas, S., Sarkar, S.P.: A Lagrange spectral collocation method for weakly singular fuzzy fractional Volterra integro-differential equations. Soft Comput. 27(8), 4483–4499 (2023)

    Article  Google Scholar 

  37. Ngo, V.H.: Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst. 280(C), 58–90 (2015)

  38. Pandey, P., Singh, J.: An efficient computational approach for nonlinear variable order fuzzy fractional partial differential equations. Comput. Appl. Math. 41, 1–21 (2022)

    Article  MathSciNet  Google Scholar 

  39. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1372–1381 (2012)

    Article  MathSciNet  Google Scholar 

  40. Sene, N.: SIR epidemic model with Mittag-Leffler fractional derivative. Chaos Solit. Fractals 137, 109833 (2020)

    Article  MathSciNet  Google Scholar 

  41. Shabestari, M.R.M., Ezzati, R., Allahviranloo, T.: Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre wavelet method. J. Intell. Fuzzy Syst. 34(4), 2453–2465 (2018)

    Article  Google Scholar 

  42. Shabestari, R.M., Ezzati, R., Allahviranloo, T.: Solving fuzzy Volterra integrodifferential equations of fractional order by Bernoulli wavelet method. Adv. Fuzzy Syst. 2018, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  43. Vu, H., Van Hoa, N.: Applications of contractive-like mapping principles to fuzzy fractional integral equations with the kernel \(\psi \)-functions. Soft Comput. 24(24), 18841–18855 (2020)

    Article  Google Scholar 

  44. Vu, H., Van Hoa, N.: Hyers-Ulam stability of fuzzy fractional volterra integral equations with the kernel \(\psi \)-function via successive approximation method. Fuzzy Sets Syst. 419, 67–98 (2021)

    Article  MathSciNet  Google Scholar 

  45. Wang, X., Luo, D., Zhu, Q.: Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solit. Fractals 156, 111822 (2022)

    Article  MathSciNet  Google Scholar 

  46. Yang, Z., Wang, J., Yuan, Z., Nie, Y.: Using Gauss-Jacobi quadrature rule to improve the accuracy of FEM for spatial fractional problems. Numer. Algorithms 69, 1389–1411 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their detailed comments and valuable suggestions, which improved the paper.

Funding

This work was partially supported by the financial support from the National Natural Science Foundation of China (12101089).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text including Section 1–Section 7. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jin Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Huang, J., Wang, Y. et al. A generalized fuzzy barycentric Lagrange interpolation method for solving two-dimensional fuzzy fractional Volterra integral equations. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01814-y

Keywords

Navigation