Skip to main content
Log in

Investigation on the mass of open-charm dibaryons as hexaquarks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Conventionally, it is claimed that hexaquarks are exotic particles, most of which have not yet been experimentally detected. This essay is fixated on the view to extend a simple phenomenological model based on the Gürsey–Radicati mass formula for hadrons, including charm baryons and to predict the mass of hexaquark states. To make our purpose conspicuous, we perform a numerical tuning of this model, consisting of four sets, each containing six free parameters for baryons and dibaryons. In the long run, other predicted values for the mass of additional hexaquarks could be shown to agree with upcoming experimental results. As we have asserted, the results obtained from this work give us a deeper insight into the structural features of six-quark particles. Finally, we have included other available data from the other works and compared that data with ours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  2. K Azizi, S S Agaev and H Sundu, J. Phys. G: Nucl. Part. Phys. 9, 47 (2020)

    Google Scholar 

  3. H X Chen, W Chen, X Liu, Y R Liu and S L Zhu, Rep. Prog. Phys. 80, 076201 (2017)

    Article  ADS  Google Scholar 

  4. A Esposito, A Pilloni and A D Polosa, Phys. Rep. 668, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. A Ali, J S Lange and S Stone, Prog. Part. Nucl. Phys. 97, 123 (2017)

    Article  ADS  Google Scholar 

  6. S L Olsen, T Skwarnicki and D Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

    Article  ADS  Google Scholar 

  7. F Dyson and N H Xuong, Phys. Rev. Lett. 13, 815 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Oka and K Yazaki, Phys. Lett. B 1–2, 90 (1980)

    Google Scholar 

  9. R L Jaffe, Phys. Rep. 409, 1, arXiv:hep-ph/0409065 (2005)

  10. A Esposito, A Pilloni and A D Polosa, Phys. Rep. 668, 1 (2017), arXiv:1611.07920 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  11. A Ali, L Maiani and A D Polosa D Polosa, Multiquark hadrons (Cambridge University Press, 2019)

  12. R L Jaffe, Phys. Rev. Lett. 38, 195 (1977)

    Article  ADS  Google Scholar 

  13. S A Yost and C R Nappi, Phys. Rev. D 32, 816 (1985)

    Article  ADS  Google Scholar 

  14. S D Paganis, G W Hoffmann, R L Ray, J L Tang, T Udagawa and R S Longacre, Phys. Rev. C 62, 024906 (2000)

    Article  ADS  Google Scholar 

  15. J L Rosner, Phys. Rev. D 33, 2043 (1986)

    Article  ADS  Google Scholar 

  16. WASA-at-COSY Collaboration: P Adlarson et al, Phys. Lett. B 743, 325 (2015), arXiv:1409.2659 [nucl-ex]

  17. M Oka, S Maeda and Y R Liu, Int. J. Mod. Phys. Conf. Ser. 49, 1960004 (2019)

    Article  Google Scholar 

  18. J Vijande, A Valcarce, J M Richard and P Sorba, Phys. Rev. D 94, 034038 (2016)

    Article  ADS  Google Scholar 

  19. L Meng, N Li and S L Zhu, Phys. Rev. D 95, 114019 (2017)

    Article  ADS  Google Scholar 

  20. R Chen, F L Wang, A Hosaka and X Liu, Phys. Rev. D 97, 114011 (2018)

    Article  ADS  Google Scholar 

  21. J M Richard, A Valcarce and J Vijande, Phys. Rev. Lett. 124, 212001 (2020)

    Article  ADS  Google Scholar 

  22. H Huang, J Ping, X Zhu and F Wang, arXiv:2011.00513 (2011)

  23. W Park, A Park and S H Lee, Phys. Rev. D 92, 014037 (2015)

    Article  ADS  Google Scholar 

  24. N Shiri, N Tazimi and M Monemzadeh, Eur. Phys. J. C 1, 53 (2023)

    Article  ADS  Google Scholar 

  25. BESIII Collaboration: M Ablikim et al, Phys. Rev. D 104, 052012 (2021)

  26. Belle Collaboration: X L Wang et al, Phys. Rev. D 91, 112007 (2015)

    ADS  Google Scholar 

  27. BABAR Collaboration: J P Lees et al, Phys. Rev. D 89, 111103 (2014)

  28. C F Qiao, Phys. Lett. B 639, 263 (2006)

    Article  ADS  Google Scholar 

  29. Y D Chen and C F Qiao, Phys. Rev. D 85, 034034 (2012)

    Article  ADS  Google Scholar 

  30. Belle Collaboration: G Pakhlova et al, Phys. Rev. Lett. 101, 172001 (2008)

    Google Scholar 

  31. N Lee, Z G Luo, X L Chen and S L Zhu, Phys. Rev. D 84, 014031 (2011)

    Article  ADS  Google Scholar 

  32. Y D Chen, C F Qiao, P N Shen and Z Q Zeng, Phys. Rev. D 88, 114007 (2013)

    Article  ADS  Google Scholar 

  33. X Li and M B Voloshin, Mod. Phys. Lett. A 29, 1450060 (2014)

    Article  ADS  Google Scholar 

  34. A De Rjula, H Georgi and S L Glashow, Phys. Rev. D 12, 147 (1975)

    Article  ADS  Google Scholar 

  35. G S Bali et al, Phys. Rev. D 62, 054503 (2000); G S Bali, Phys. Rep. 343, 1 (2001)

  36. C Alexandrou, P de Forcrand and O Jahn, Nucl. Phys. Proc. Suppl. 119, 667 (2003); H Suganuma, T T Takahashi, F Okiharu and H Ichie, hep-lat/0407014

  37. E Santopinto, F Iachello and M M Giannini, Eur. Phys. J. A 1, 307 (1998)

    Article  ADS  Google Scholar 

  38. S Godfrey and N Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  39. L Ya Glozman, Z Papp, W Plessas, K Varga and R F Wagenbrunn, Phys. Rev. C 57, 3406 (1998); L Ya Glozman, W Plessas, K Varga and R F Wagenbrunn, Phys. Rev. D 58, 094030 (1998)

  40. M M Giannini, E Santopinto and A Vassallo, Eur. Phys. J. A 12, 447 (2001)

    Article  ADS  Google Scholar 

  41. F Gürsey and L A Radicati, Phys. Rev. Lett. 13, 173 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  42. R Bijker, MM Giannini and E Santopinto, Eur. Phys. J. A 22, 319 (2004), hep-ph/0310281

  43. R Bijker, F Iachello and A Leviatan, Ann. Phys. 226, 1 (1994)

    Google Scholar 

  44. C Helminen and D O Riska, Nucl. Phys. A 699, 624 (2002)

    Article  ADS  Google Scholar 

  45. Particle Data Group: R L Workman et al, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

  46. C Beiming, J Grönroos and T Ohlsson, Nucl. Phys. B 974, 115616 (2022)

    Article  Google Scholar 

  47. P Holma and T Ohlsson, Phys. Lett. B 800, 135108 (2020)

    Article  Google Scholar 

  48. B K Jennings and K Maltman, hep-ph/0308286

  49. X Z Ling, M Z Liu and L S Geng, The Eur. Phys. J. C 81, 1090 (2021)

    Article  ADS  Google Scholar 

  50. S Y Kong, J T Zhu and J He, The Eur. Phys. J. C 82(9), 1 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the University of Kashan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tazimi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, N., Tazimi, N. Investigation on the mass of open-charm dibaryons as hexaquarks. Pramana - J Phys 98, 49 (2024). https://doi.org/10.1007/s12043-024-02730-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02730-5

Keywords

PACS Nos

Navigation