Skip to main content
Log in

On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider bounded selfadjoint linear integral operators \( T_{1} \) and \( T_{2} \) in the Hilbert space \( L_{2}([a,b]\times[c,d]) \) which are usually called partial integral operators. We assume that \( T_{1} \) acts on a function \( f(x,y) \) in the first argument and performs integration in \( x \), while \( T_{2} \) acts on \( f(x,y) \) in the second argument and performs integration in \( y \). We assume further that \( T_{1} \) and \( T_{2} \) are bounded but not compact, whereas \( T_{1}T_{2} \) is compact and \( T_{1}T_{2}=T_{2}T_{1} \). Partial integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrödinger operators. We study the spectral properties of \( T_{1} \), \( T_{2} \), and \( T_{1}+T_{2} \) with nondegenerate kernels and established some formula for the essential spectra of \( T_{1} \) and \( T_{2} \). Furthermore, we demonstrate that the discrete spectra of \( T_{1} \) and \( T_{2} \) are empty, and prove a theorem on the structure of the essential spectrum of \( T_{1}+T_{2} \). Also, under study is the problem of existence of countably many eigenvalues in the discrete spectrum of \( T_{1}+T_{2} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vekua I.N., New Methods for Solving Elliptic Equations, Gostekhizdat, Moscow and Leningrad (1948) [Russian].

    Google Scholar 

  2. Aleksandrov V.M. and Kovalenko E.V., “On a class of integral equations in mixed problems of continuum mechanics,” Soviet Phys. Dokl., vol. 25, no. 2, 354–356 (1980).

    Google Scholar 

  3. Aleksandrov V.M. and Kovalenko E.V., “Contact interaction of bodies with coatings in the presence of abrasion,” Soviet Phys. Dokl., vol. 29, no. 4, 340–342 (1984).

    Google Scholar 

  4. Manzhirov A.V., “On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology,” J. Appl. Math. Mech., vol. 49, no. 6, 777–782 (1985).

    Article  MathSciNet  Google Scholar 

  5. Goursat È., A Course in Mathematical Analysis, Dover, New York (1959).

    Google Scholar 

  6. Müntz H.M., Integral Equations. Vol. 1, ONTI NKTP SSSR, Moscow and Leningrad (1934) [Russian].

    Google Scholar 

  7. Eshkabilov Yu.Kh., “A discrete ‘three-particle’ Schrödinger operator in the Hubbard model,” Theor. Math. Phys., vol. 149, no. 2, 1497–1511 (2006).

    Article  MathSciNet  Google Scholar 

  8. Albeverio S., Lakaev S.N., and Muminov Z.I., “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices,” Russian J. Math. Phys., vol. 147, no. 4, 377–387 (2007).

    Article  MathSciNet  Google Scholar 

  9. Rasulov T.Kh., “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice,” Theor. Math. Phys., vol. 163, no. 1, 429–437 (2010).

    Article  MathSciNet  Google Scholar 

  10. Appell J.M., Kalitvin A.S., and Nashed M.Z., “On some partial integral equations arising in the mechanics of solids,” J. Appl. Math. Mech., vol. 79, no. 10, 703–713 (1999).

    MathSciNet  Google Scholar 

  11. Kalitvin A.S., Linear Operators with Partial Integrals, Central Black Earth Book, Voronezh (2000) [Russian].

    Google Scholar 

  12. Appell J.M., Kalitvin A.S., and Zabrejko P.P., Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York and Basel (2000).

    Book  Google Scholar 

  13. Kalitvin A.S., “On the spectrum of linear operators with partial integrals and positive kernels,” in: Operators and Their Applications: Interuniversity Compilation of Scientific Works, Leningrad University, Leningrad (1988), 43–50 [Russian].

  14. Kalitvin A.S. and Zabrejko P.P., “On the theory of partial integral operators,” J. Integral Equ. Appl., vol. 3, no. 3, 351–382 (1991).

    MathSciNet  Google Scholar 

  15. Kalitvin A.S. and Kalitvin V.A., “Linear operators and equations with partial integrals,” Contemporary Mathematics. Fundamental Directions, vol. 65, no. 3, 390–433 (2019).

    Article  Google Scholar 

  16. Eshkabilov Yu.Kh., “On the spectrum of the tensor sum of compact operators,” Uzbek Math. J., vol. 3, 104–112 (2005).

    MathSciNet  Google Scholar 

  17. Eshkabilov Yu.Kh., “Partial integral operator with bounded kernels,” Siberian Adv. Math., vol. 19, no. 3, 151–161 (2008).

    Article  MathSciNet  Google Scholar 

  18. Eshkabilov Yu.Kh., “Essential and discrete spectra of partially integral operators,” Siberian Adv. Math., vol. 19, no. 4, 233–244 (2008).

    Article  MathSciNet  Google Scholar 

  19. Eshkabilov Yu.Kh., “On the discrete spectrum of partially integral operators,” Siberian Adv. Math., vol. 23, no. 4, 227–233 (2012).

    Article  MathSciNet  Google Scholar 

  20. Arzikulov G.P. and Eshkabilov Yu.Kh., “On the essential and the discrete spectra of a Fredholm type partial integral operator,” Siberian Adv. Math., vol. 25, no. 4, 231–242 (2014).

    Article  Google Scholar 

  21. Arzikulov G.P. and Eshkabilov Yu.Kh., “On the spectra of partial integral operators,” Uzbek Math. J., vol. 2, 148–159 (2015).

    MathSciNet  Google Scholar 

  22. Reed M. and Simon B., Methods of Modern Mathematical Physics. Vol. 1: Functional Analysis, Academic, New York (1972).

    Google Scholar 

  23. Pankrashkin K., Introduction to the Spectral Theory, University of Paris-Sud, Orsay (2014).

    Google Scholar 

  24. Kantorovich L.V. and Akilov G.P., Functional Analysis, Pergamon, Oxford and New York (1982).

    Google Scholar 

  25. Eshkabilov Yu.Kh., “On infinity of the discrete spectrum operators in the Friedrichs model,” Siberian Adv. Math., vol. 22, no. 1, 1–12 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zh. Kulturaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Vladikavkazskii Matematicheskii Zhurnal, 2022, Vol. 24, No. 4, pp. 91–104. https://doi.org/10.46698/y9559-5148-4454-e

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulturaev, D.Z., Eshkabilov, Y.K. On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel. Sib Math J 65, 475–486 (2024). https://doi.org/10.1134/S0037446624020204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446624020204

Keywords

UDC

Navigation