Skip to main content
Log in

Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Homogenization of the Neumann problem for a differential equation in a periodically broken multidimensional cylinder leads to a second-order ordinary differential equation. We study asymptotics for the coefficient of the averaged operator in the case of small transverse cross-sections. The main asymptotic term depends on the “area” of cross-sections of the links, their lengths, and the coefficient matrix of the original operator. We find the characteristics of kink zones which affect correction terms, while the asymptotic remainder becomes exponentially small. The justification of the asymptotics is based on Friedrichs’s inequality with a coefficient independent of both small parameters: the period of fractures and the relative diameter of cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The accuracy just as impressive was attained in [10] while modeling a Stokes flow in a branching thin blood vessel.

  2. For brevity, it is convenient to denote by \( \mathbf{A}^{\pm} \) the truncated \( (n-1)\times(n-1) \)-matrix and decorate the full one with \( \square \).

  3. \( {\mathcal{C}}^{\circ}_{0} \) is a continuous linear functional of \( \mathbf{F}\in{W}^{1}_{-\beta}(\Pi^{\circ})^{\ast} \); see Remark 2.

References

  1. Ladyzhenskaya O.A., The Boundary Value Problems of Mathematical Physics, Springer, New York etc. (1985).

    Book  Google Scholar 

  2. Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory, Springer, Berlin (1980) (Lecture Notes in Physics; vol. 127).

    Google Scholar 

  3. Bakhvalov N.S. and Panasenko G.P., Averaging Processes in Periodic Media, Nauka, Moscow (1984) [Russian].

    Google Scholar 

  4. Oleinik O.A., Iosifyan G.A., and Shamaev A.S., Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media, Moscow University, Moscow (1990) [Russian].

    Google Scholar 

  5. Zhikov V.V., Kozlov S.M., and Oleinik O.A., Averaging of Differential Operators, Fiz. Mat. Lit., Moscow (1993) [Russian].

    Google Scholar 

  6. Pyatnitskii E.S., Chechkin G.A., and Shamaev A.S., Homogenization. Methods and Applications, Tamara Rozhkovskaya, Novosibirsk (2007) [Russian].

    Google Scholar 

  7. Iosifyan G.A., Oleinik O.A., and Shamaev A.S., “Asymptotic expansion of eigenvalues and eigenfunctions of the Sturm–Liouville problem with rapidly oscillating coefficients,” Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, vol. 6, 37–46 (1985).

    MathSciNet  Google Scholar 

  8. Panasenko G.P., “Asymptotic analysis of bar systems. I,” Russ. J. Math. Phys., vol. 2, no. 3, 325–352 (1994); “II,” vol. 4, no. 1, 87–116 (1996).

  9. Nazarov S.A., “Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle,” Math. USSR-Sb., vol. 73, no. 1, 79–110 (1991).

    Article  MathSciNet  Google Scholar 

  10. Kozlov V.A. and Nazarov S.A., “A one-dimensional model of flow in a junction of thin channels, including arterial trees,” Sb. Math., vol. 208, no. 8, 1138–1186 (2017) (Correction: Sb. Math., 2018, vol. 209, no. 6, 919).

    Article  MathSciNet  Google Scholar 

  11. Cioranescu D. and Saint Jean Paulin J., Homogenization of Reticulated Structures, Springer, Berlin etc. (1999).

    Book  Google Scholar 

  12. Zhikov V.V., “Homogenization of elasticity problems on singular structures,” Izv. Math., vol. 66, no. 2, 299–365 (2002).

    Article  MathSciNet  Google Scholar 

  13. Nazarov S.A. and Slutskii A.S., “Arbitrary plane systems of anisotropic beams,” Proc. Steklov Inst. Math., vol. 236, no. 1, 222–249 (2002).

    MathSciNet  Google Scholar 

  14. Zhikov V.V. and Pastukhova S.E., “Homogenization for elasticity problems on periodic networks of critical thickness,” Sb. Math., vol. 194, no. 5, 697–732 (2003).

    Article  MathSciNet  Google Scholar 

  15. Nazarov S.A. and Slutskii A.S., “Asymptotic analysis of arbitrary spatial system of thin rods,” Trans. Amer. Math. Soc. Ser. 2, vol. 214, 59–107 (2005).

    MathSciNet  Google Scholar 

  16. Panasenko G. and Pileckas K., “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe,” Appl. Anal., vol. 91, no. 3, 559–574 (2012).

    Article  MathSciNet  Google Scholar 

  17. Panasenko G. and Pileckas K., “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure I. The case without boundary-layer-in-time,” Nonlinear Anal., vol. 122, 125–168 (2015).

    Article  MathSciNet  Google Scholar 

  18. Nazarov S.A., “On the one-dimensional asymptotic models of thin Neumann lattices,” Sib. Math. J., vol. 64, no. 2, 356–373 (2023).

    Article  MathSciNet  Google Scholar 

  19. Bers L., John F., and Schechter M., Partial Differential Equations, Amer. Math. Soc., Providence (1974).

    Google Scholar 

  20. Nazarov S.A., Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk (2001) [Russian].

    Google Scholar 

  21. Kondrat’ev V.A., “Boundary problems for elliptic equations in domains with conical or angular points,” Trans. Moscow Math. Soc., vol. 16, 227–313 (1967).

    MathSciNet  Google Scholar 

  22. Nazarov S.A., “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes,” Russian Math. Surveys, vol. 54, no. 5, 947–1014 (1999).

    Article  MathSciNet  Google Scholar 

  23. Nazarov S.A. and Plamenevsky B.A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter, Berlin and New York (1994).

    Book  Google Scholar 

  24. Mazya V., Nazarov S., and Plamenevskij B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 2, Birkhäuser, Basel (2000).

    Book  Google Scholar 

  25. Mazya V.G. and Plamenevskii B.A., “On coefficients in asymptotic expansions of solutions to elliptic boundary value problems in domains with conical points,” Math. Nachr., vol. 76, 29–60 (1977).

    MathSciNet  Google Scholar 

  26. Van Dyke M., Perturbation Methods in Fluid Mechanics, Academic, New York and London (1964).

    Google Scholar 

  27. Il’in A.M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence (1992) (Transl. Math. Monogr., vol. 102).

    Book  Google Scholar 

Download references

Funding

The authors were financially supported by the Russian Science Foundation (Project 22–11–00046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2024, Vol. 65, No. 2, pp. 374–393. https://doi.org/10.33048/smzh.2024.65.211

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A., Slutskii, A.S. Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder. Sib Math J 65, 363–380 (2024). https://doi.org/10.1134/S0037446624020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446624020113

Keywords

UDC

Navigation