Skip to main content
Log in

Birman–Hilden Bundles. II

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the structure of self-homeomorphism groups of fibered manifolds. A fibered topological space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We prove in particular that the Birman–Hilden class contains all compact connected locally trivial surface bundles over the circle, including nonorientable ones and those with nonempty boundary, as well as all closed orientable Haken 3-manifold bundles over the circle, including nonorientable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case of a manifold \( N \) locally trivially fibered over the circle with compact fiber \( M \) the subgroup \( Fib_{1}(N) \) is closed regardless of the bundle lying in the Birman–Hilden class. We can justify this by using the local contractibility (Chernavskii’s Theorem [27]) of the underlying space of the group of self-homeomorphisms of \( M \): since \( Homeo(M) \) is locally simply-connected, we conclude that \( Fib_{1}(N) \) is locally path-connected.

  2. A fiber-preserving self-homeomorphism of a fibered space is called fiberwise whenever it takes each fiber to the same fiber.

  3. For the case of a closed orientable surface of genus above \( 1 \) this fact is already justified in [34, 49].

  4. Thus, in the case of a closed surface of negative Euler characteristic both alternative hypotheses of Theorem 4 hold: \( Homeo_{1}(X)\subset Map_{1}(X,X) \) induces an isomorphism of fundamental groups and \( Homeo_{1}(X) \) is simply-connected.

  5. Henceforth in similar cases the mentioned statements, as a rule, deal only with isomorphisms of groups, but it is clear from the constructions that these isomorphisms are induced by the embeddings of spaces in question.

  6. The statements of Theorems 6.3 and 6.4 in [35] refer to homotopies and isotopies without restrictions on the boundary, but in their proofs presented in [35] the situation reduces precisely to the pointwise boundary fixing cases, and the required property is established.

References

  1. Malyutin A.V., “Birman–Hilden bundles. I,” Sib. Math. J., vol. 65, no. 1, 106–117 (2024).

    Article  MathSciNet  Google Scholar 

  2. Birman J.S. and Hilden H.M., “On the mapping class groups of closed surfaces as covering spaces,” in: Advances in the Theory of Riemann Surfaces, Princeton University, Princeton (1971), 81–115 (Ann. Math. Stud.; vol. 66).

  3. Birman J.S. and Hilden H.M., “Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin’s braid group,” Bull. Amer. Math. Soc., vol. 78, no. 6, 1002–1004 (1972).

    Article  MathSciNet  Google Scholar 

  4. Birman J.S. and Hilden H.M., “Lifting and projecting homeomorphisms,” Arch. Math. (Basel), vol. 23, 428–434 (1972).

    Article  MathSciNet  Google Scholar 

  5. Birman J.S. and Hilden H.M., “On isotopies of homeomorphisms of Riemann surfaces,” Ann. Math. (2), vol. 97, 424–439 (1973).

    Article  MathSciNet  Google Scholar 

  6. Birman J.S. and Hilden H.M., “Erratum to ‘On isotopies of homeomorphisms of Riemann surfaces’,” Ann. Math. (2), vol. 185, 345 (2017).

    Article  MathSciNet  Google Scholar 

  7. Zieschang H., “On the homeotopy group of surfaces,” Math. Ann., vol. 206, 1–21 (1973).

    Article  MathSciNet  Google Scholar 

  8. Maclachlan C. and Harvey W.J., “On mapping-class groups and Teichmüller spaces,” Proc. Lond. Math. Soc., vol. 30, 496–512 (1975).

    Article  Google Scholar 

  9. Berstein I. and Edmonds A.L., “On the construction of branched coverings of low-dimensional manifolds,” Trans. Amer. Math. Soc., vol. 247, 87–124 (1979).

    Article  MathSciNet  Google Scholar 

  10. Fuller T., “On fiber-preserving isotopies of surface homeomorphisms,” Proc. Amer. Math. Soc., vol. 129, no. 4, 1247–1254 (2001).

    Article  MathSciNet  Google Scholar 

  11. Aramayona J., Leininger C.J., and Souto J., “Injections of mapping class groups,” Geom. Topol., vol. 13, no. 5, 2523–2541 (2009).

    Article  MathSciNet  Google Scholar 

  12. Winarski R.R., “Symmetry, isotopy, and irregular covers,” Geom. Dedicata, vol. 177, 213–227 (2015).

    Article  MathSciNet  Google Scholar 

  13. Ghaswala T. and Winarski R.R., “Lifting homeomorphisms and cyclic branched covers of spheres,” Michigan Math. J., vol. 66, no. 4, 885–890 (2017).

    MathSciNet  Google Scholar 

  14. Atalan F. and Medetogullari E., “The Birman–Hilden property of covering spaces of nonorientable surfaces,” Ukrainian Math. J., vol. 72, no. 3, 348–357 (2020).

    Article  MathSciNet  Google Scholar 

  15. Margalit D. and Winarski R.R., “Braids groups and mapping class groups: The Birman–Hilden theory,” Bull. Lond. Math. Soc., vol. 53, no. 3, 643–659 (2021).

    Article  MathSciNet  Google Scholar 

  16. Kolbe B. and Evans M.E., “Isotopic tiling theory for hyperbolic surfaces,” Geom. Dedicata, vol. 212, 177–204 (2021).

    Article  MathSciNet  Google Scholar 

  17. Dey S., Dhanwani N.K., Patil H., and Rajeevsarathy K., Generating the Liftable Mapping Class Groups of Regular Cyclic Covers. arXiv:2111.01626v1 (2021).

    Google Scholar 

  18. Vogt E., “Projecting isotopies of sufficiently large \( P^{2} \)-irreducible \( 3 \)-manifolds,” Arch. Math. (Basel), vol. 29, no. 6, 635–642 (1977).

    Article  MathSciNet  Google Scholar 

  19. Ohshika K., “Finite subgroups of mapping class groups of geometric \( 3 \)-manifolds,” J. Math. Soc. Japan, vol. 39, no. 3, 447–454 (1987).

    MathSciNet  Google Scholar 

  20. Friedman J.L. and Witt D.M., “Homotopy is not isotopy for homeomorphisms of \( 3 \)-manifolds,” Topology, vol. 25, no. 1, 35–44 (1986).

    Article  MathSciNet  Google Scholar 

  21. Artin E., “Theorie der Zöpfe,” Abh. Math. Sem. Univ. Hamburg, vol. 4, 47–72 (1925).

    Article  MathSciNet  Google Scholar 

  22. Morton H.R., “Infinitely many fibred knots having the same Alexander polynomial,” Topology, vol. 17, no. 1, 101–104 (1978).

    Article  MathSciNet  Google Scholar 

  23. Burde G. and Zieschang H., Knots, De Gruyter, Berlin (1985) (De Gruyter Stud. Math.; vol. 5).

    Google Scholar 

  24. Kassel C. and Turaev V., Braid Groups. 3rd ed., Springer, New York (2008) (Grad. Texts Math.; vol. 247).

    Book  Google Scholar 

  25. McCoy R. A., “Completely metrizable spaces of embeddings,” Proc. Amer. Math. Soc., vol. 84, no. 3, 437–442 (1982).

    Article  MathSciNet  Google Scholar 

  26. Kuratowski C., “Evaluation de la classe borélienne ou projective d’un ensemble de points à l’aide des symboles logiques,” Fund. Math., vol. 17, 249–272 (1931).

    Article  Google Scholar 

  27. Chernavskii A.V., “Local contractibility of the group of homeomorphisms of a manifold,” Math. USSR Sb., vol. 8, no. 3, 287–333 (1969).

    Article  Google Scholar 

  28. Chernavskii A.V., “Local contractibility of the group of homeomorphisms of \( {𝕉}^{n} \),” in: Geometry, Topology, and Mathematical Physics. I. Dedicated to S.P. Novikov on the Occasion of His 70 Birthday, MAIK, Moscow (2008), 201–215 [Russian] (Trudy MIAN; vol. 263).

  29. Rosendal C., Coarse Geometry of Topological Groups, Cambridge University, Cambridge (2021) (Camb. Tracts Math.; vol. 223).

    Book  Google Scholar 

  30. Viro O.Ya., Ivanov O.A., Netsvetaev N.Yu., and Kharlamov V.M., Elementary Topology: Problem Textbook, Amer. Math. Soc., Providence (2008).

    Book  Google Scholar 

  31. Whitehead J.H.C., “Combinatorial homotopy. I,” Bull. Amer. Math. Soc., vol. 55, 213–245 (1949).

    Article  MathSciNet  Google Scholar 

  32. Milnor J., “On spaces having the homotopy type of a CW-complex,” Trans. Amer. Math. Soc., vol. 90, no. 2, 272–280 (1959).

    MathSciNet  Google Scholar 

  33. Hanner O., “Some theorems on absolute neighborhood retracts,” Ark. Mat., vol. 1, 389–408 (1951).

    Article  MathSciNet  Google Scholar 

  34. Baer R., “Kurventypen auf Flächen,” J. Reine Angew. Math., vol. 156, 231–246 (1927).

    Article  MathSciNet  Google Scholar 

  35. Epstein D.B.A., “Curves on 2-manifolds and isotopies,” Acta Math., vol. 115, 83–107 (1966).

    Article  MathSciNet  Google Scholar 

  36. Ghys É., “Groups acting on the circle,” Enseign. Math. (2), vol. 47, no. 3, 329–407 (2001).

    MathSciNet  Google Scholar 

  37. McCarty G.S., Jr., “Homeotopy groups,” Trans. Amer. Math. Soc., vol. 106, 293–304 (1963).

    Article  MathSciNet  Google Scholar 

  38. Wada H., “On the space of mappings of a sphere on itself,” Ann. of Math. (2), vol. 64, 420–435 (1956).

    Article  MathSciNet  Google Scholar 

  39. Wada H., “Note on some mapping spaces,” Tôhoku Math. J. (2), vol. 10, no. 2, 143–145 (1958).

    MathSciNet  Google Scholar 

  40. Koh S.S., “Note on the homotopy properties of the components of the mapping space \( X^{S^{p}} \),” Proc. Amer. Math. Soc., vol. 11, 896–904 (1960).

    MathSciNet  Google Scholar 

  41. Adams J.F., “On the nonexistence of elements of Hopf invariant one,” Bull. Amer. Math. Soc., vol. 64, 279–282 (1958).

    Article  MathSciNet  Google Scholar 

  42. Adams J.F., “On the non-existence of elements of Hopf invariant one,” Ann. Math. (2), vol. 72, 20–104 (1960).

    Article  MathSciNet  Google Scholar 

  43. Hansen V.L., “The homotopy problem for the components in the space of maps on the \( n \)-sphere,” Quart. J. Math. Oxford Ser. (2), vol. 25, 313–321 (1974).

    Article  MathSciNet  Google Scholar 

  44. Alexander J.W., “On the deformation of an \( n \)-cell,” Proc. Nat. Acad. Sci. U.S.A., vol. 9, 406–407 (1923).

    Article  Google Scholar 

  45. Hamstrom M.-E., “Homotopy in homeomorphism spaces, \( TOP \) and \( PL \),” Bull. Amer. Math. Soc., vol. 80, 207–230 (1974).

    Article  MathSciNet  Google Scholar 

  46. Hamstrom M.-E., “The space of homeomorphisms on a torus,” Illinois J. Math., vol. 9, 59–65 (1965).

    MathSciNet  Google Scholar 

  47. Hamstrom M.-E., “Homotopy properties of the space of homeomorphisms on \( P^{2} \) and the Klein bottle,” Trans. Amer. Math. Soc., vol. 120, 37–45 (1965).

    MathSciNet  Google Scholar 

  48. Luke R. and Mason W.K., “The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract,” Trans. Amer. Math. Soc., vol. 164, 275–285 (1972).

    Article  MathSciNet  Google Scholar 

  49. Baer R., “Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen,” J. Reine Angew. Math., vol. 159, 101–116 (1928).

    Article  MathSciNet  Google Scholar 

  50. Hamstrom M.-E., “Homotopy groups of the space of homeomorphisms on a \( 2 \)-manifold,” Illinois J. Math., vol. 10, 563–573 (1966).

    Article  MathSciNet  Google Scholar 

  51. Hamstrom M.-E. and Dyer E., “Regular mappings and the space of homeomorphisms on a \( 2 \)-manifold,” Duke Math. J., vol. 25, 521–531 (1958).

    Article  MathSciNet  Google Scholar 

  52. Hamstrom M.-E., “Some global properties of the space of homeomorphisms on a disc with holes,” Duke Math. J., vol. 29, 657–662 (1962).

    Article  MathSciNet  Google Scholar 

  53. Gottlieb D.H., “A certain subgroup of the fundamental group,” Amer. J. Math., vol. 87, 840–856 (1965).

    Article  MathSciNet  Google Scholar 

  54. Hansen V.L., “The homotopy groups of a space of maps between oriented closed surfaces,” Bull. London Math. Soc., vol. 15, no. 4, 360–364 (1983).

    Article  MathSciNet  Google Scholar 

  55. Yamanoshita T., “On the space of self-homotopy equivalences of the projective plane,” J. Math. Soc. Japan, vol. 45, 489–494 (1993).

    MathSciNet  Google Scholar 

  56. Arens R., “A topology for spaces of transformations,” Ann. Math., vol. 47, 480–495 (1946).

    Article  MathSciNet  Google Scholar 

  57. Hu S.-T., Theory of Retracts, Wayne State University, Detroit (1965).

    Google Scholar 

  58. Thom R., “L’homologie des espaces fonctionnels,” in: Colloque de topologie algébrique (Louvain, 1956). Georges Thone, Liège, Masson, Paris (1957), 29–39.

  59. Rutter J.W., Spaces of Homotopy Self-Equivalences, Springer, Berlin (1997) (Lect. Notes Math.; vol. 1662).

    Book  Google Scholar 

  60. Smith S. B., “The homotopy theory of function spaces: A survey,” in: Homotopy Theory of Function Spaces and Related Topics, Amer. Math. Soc., Providence (2010), 3–39 (Contemp. Math.; vol. 519).

  61. Kneser H., “Die Deformationssätze der einfach zusammenhängenden Flächen,” Math. Z., vol. 25, no. 1, 362–372 (1926).

    Article  MathSciNet  Google Scholar 

  62. Hansen V.L., “The space of self-maps on the \( 2 \)-sphere,” in: Groups of Self-Equivalences and Related Topics. (Montreal, PQ, 1988), Springer, Berlin (1990), 40–47 (Lect. Notes Math.; vol. 1425).

  63. Gonçalves D.L. and Spreafico M., “The fundamental group of the space of maps from a surface into the projective plane,” Math. Scand., vol. 104, no. 2, 161–181 (2009).

    Article  MathSciNet  Google Scholar 

  64. Waldhausen F., “On irreducible \( 3 \)-manifolds which are sufficiently large,” Ann. Math. (2), vol. 87, 56–88 (1968).

    Article  MathSciNet  Google Scholar 

  65. Laudenbach F., Topologie de la dimension trois: homotopie et isotopie, Sot. Math. de France, Paris (1974) (Astérisque; vol. 12).

    Google Scholar 

  66. Hatcher A., “Homeomorphisms of sufficiently large \( P^{2} \)-irreducible \( 3 \)-manifolds,” Topology, vol. 15, no. 4, 343–347 (1976).

    Article  MathSciNet  Google Scholar 

  67. Hatcher A., “A proof of the Smale conjecture, \( \operatorname{Diff}(S^{3})\simeq O(4) \),” Ann. Math. (2), vol. 117, no. 3, 553–607 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Yu.S. Belousov, I.A. Dynnikov, S.S. Podkorytov, and E.A. Fominykh for useful discussions and to the referee for useful remarks.

Funding

The study was supported by the Russian Science Foundation grant no. 22–11–00299, https://rscf.ru/en/project/22-11-00299/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malyutin.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2024, Vol. 65, No. 2, pp. 358–373. https://doi.org/10.33048/smzh.2024.65.210

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyutin, A.V. Birman–Hilden Bundles. II. Sib Math J 65, 351–362 (2024). https://doi.org/10.1134/S0037446624020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446624020101

Keywords

UDC

Navigation