Skip to main content
Log in

Thermal performance analysis of hollow brick walls in hot and dry climatic zones

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper evaluates the thermal performance of building walls in Morocco’s hot and dry climatic zones. Two types of hollow brick walls, namely, single wall (Type A) and double wall (Type B), are examined. The objective is to identify the configuration that offers optimal thermal performance. Numerical simulations are conducted to analyze key thermal parameters, including time lag, decrement factor, and average inside surface heat flux. The results show that the double wall provides better thermal performance than the single wall which can result in lower heating and cooling costs and a more comfortable indoor environment. In fact, the time lag is extended by 5 h and the decrement factor is reduced by 33% for the double wall. On the other hand, a low emissivity covering lowers the overall thermal load during the day, enhancing interior thermal comfort and lowering building energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript. The manuscript has associated data in a data repository.

References

  1. O.A. Oguntona, C. Aigbavboa, W.D. Thwala, A scientometric analysis and visualization of green building research in Africa. J. Green Build. 16, 83–86 (2021)

    Article  Google Scholar 

  2. M.M. Bhatti, K. Vafai, S.I. Abdelsalam, The role of nanofluids in renewable energy engineering. Nanomaterials 13, 2–5 (2023)

    Article  Google Scholar 

  3. F. Ascione, N. Bianco, G.M. Mauro, G.P. Vanoli, A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin. Appl. Energy 241, 331–361 (2019)

    Article  ADS  Google Scholar 

  4. I. Guillén, V. Gómez-Lozano, J.M. Fran, P. Amparo López-Jiménez, Thermal behavior analysis of different multilayer façade: numerical model versus experimental prototype. Energy Build. 79, 184–190 (2014)

    Article  Google Scholar 

  5. K.S. Al-Jabri, A.W. Hago, A.S. Al-Nuaimi, A.H. Al-Saidy, Concrete blocks for thermal insulation in hot climate. Cem. Concr. Res. 35, 1472–1479 (2005)

    Article  Google Scholar 

  6. X. Jin, X. Zhang, Y. Cao, G. Wang, Thermal performance evaluation of the wall using heat flux time lag and decrement factor. Energy Build. 47, 369–374 (2012)

    Article  Google Scholar 

  7. M. Ozel, Thermal, economical and environmental analysis of insulated building walls in a cold climate. Energy Convers. Manag. 76, 674–684 (2013)

    Article  Google Scholar 

  8. S. Mohammad, A. Shea, Performance evaluation of modern building thermal envelope designs in the semi-arid continental climate of Tehran. Buildings 3(4), 674–688 (2013)

    Article  Google Scholar 

  9. G. Oliveti, N. Arcuri, D. Mazzeo, M. De Simone, A new parameter for the dynamic analysis of building walls using the harmonic method. Int. J. Therm. Sci. 88, 96–109 (2015)

    Article  Google Scholar 

  10. D. Mazzeo, G. Oliveti, N. Arcuri, Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime. Appl. Energy 164, 509–531 (2016)

    Article  ADS  Google Scholar 

  11. G. Huelsz, G. Barrios, J. Rojas, Equivalent-homogeneous-layers-set method for time dependent heat transfer through hollow block walls. Appl. Therm. Eng. 102, 1019–1023 (2016)

    Article  Google Scholar 

  12. Q. Kong, X. He, Y. Cao, Y. Sun, K. Chen, J. Feng, Numerical analysis of the dynamic heat transfer through an external wall under different outside temperatures. Energy Proc. 105, 2818–2824 (2017)

    Article  Google Scholar 

  13. R. Faithipour, A. Hadidi, Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran. Energy 134, 167–180 (2017)

    Article  Google Scholar 

  14. M.A. Fogiatto, G.H.D. Santos, J.V.R. Catelan, Numerical two-dimensional steady-state evaluation of the thermal transmittance reduction in hollow blocks. Energies 12(3), 449 (2019)

    Article  Google Scholar 

  15. N.C. Balaji, B.V. Monto Mani, V. Reddy, Dynamic thermal performance of conventional and alternative building wall envelopes. J. Build. Eng. 21, 373–395 (2019)

    Article  Google Scholar 

  16. H. Oktay, R. Yumrutas, Z. Arhunhan, An experimental investigation of the effect of thermophysical properties on time lag and decrement factor for building elements. Gazi Univ. J. Sci. 33, 492–508 (2020)

    Article  Google Scholar 

  17. B. Belhadj, M. Bederina, R.M. Dheilly, L.B. Mboumba-Mamboundou, M. Quéneudec, Evaluation of the thermal performance parameters of an outside wall made from lignocellulosic sand concrete and barley straws in hot and dry climatic zones. Energy Build. 225, 110348 (2020)

    Article  Google Scholar 

  18. M. Pichler, B. Haddadi, C. Jordan, M. Harasek, Modeling the effective thermal conductivity of hollow bricks at high temperatures. Constr. Build. Mater. 309, 125066 (2021)

    Article  Google Scholar 

  19. G. Soret, P. Vacca, J. Tignard, J. Hidalgo, C. Maluk, M. Aitchison, J. Torero, Thermal inertia as an integrative parameter for building performance. J. Build. Eng. 33, 101623 (2021)

    Article  Google Scholar 

  20. O. Gencel, J.J. del Coz Díaz, M. Sutcu, F. Kocyigit, F.P.Á. Rabanal, M. Alonso-Martínez, G.M. Barrera, Thermal performance optimization of lightweight concrete/EPS layered composite building blocks. Int. J. Thermophys. 42, 1–14 (2021)

    Article  Google Scholar 

  21. O. Oduyemi, M. Okoroh, Building performance modelling for sustainable building design. Int. J. Sustain. Built Environ. 5, 461–469 (2016)

    Article  Google Scholar 

  22. L.Y. Zhang, L.W. Jin, Z.N. Wang, J.Y. Zhang, X. Liu, L.H. Zhang, Effects of wall configuration on building energy performance subject to different climatic zones of China. Appl. Energy 185, 65–73 (2017)

    Article  ADS  Google Scholar 

  23. A. Muscio, H. Akbari, An index for the overall performance of opaque building elements subjected to solar radiation. Energy Build. 157, 184–194 (2017)

    Article  Google Scholar 

  24. F. Roberz, R.C.G.M. Loonen, P. Hoes, J.L.M. Hensen, Ultra-lightweight concrete: energy and comfort performance evaluation in relation to buildings with low and high thermal mass. Energy Build. 138, 432–442 (2017)

    Article  Google Scholar 

  25. F. Leccese, G. Salvadori, F. Asdrubali, P. Gori, Passive thermal behaviour of buildings: performance of external multilayered walls and influence of internal walls. Appl. Energy 225, 1078–1089 (2018)

    Article  ADS  Google Scholar 

  26. B.M. Marino, N. Munoz, L.P. Thomas, Calculation of the external surface temperature of a multi-layer wall considering solar radiation effects. Energy Build. 174, 452–463 (2018)

    Article  Google Scholar 

  27. K.A. Quagraine, E.W. Ramde, Y.A.K. Fiagbe, D.A. Quansah, Evaluation of time lag and decrement factor of walls in a hot humid tropical climate. Therm. Sci. Eng. Prog. 20, 100758 (2020)

    Article  Google Scholar 

  28. L.P. Thomas, B.M. Marino, N. Munoz, Steady-state and time-dependent heat fluxes through building envelope walls: a quantitative analysis to determine their relative significance all year round. J. Build. Eng. 29, 101122 (2020)

    Article  Google Scholar 

  29. M. Owczarek, Thermal fluxes and solar energy storage in a massive brick wall in natural conditions. Energies 14(23), 8093 (2021)

    Article  Google Scholar 

  30. K. Kontoleon, T. Theodosiou, K. Tsikaloudaki, The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements. Appl. Energy 112, 325–337 (2013)

    Article  ADS  Google Scholar 

  31. T. Tzoulis, K. Kontoleon, Thermal behaviour of concrete walls around all cardinal orientations and optimal thickness of insulation from an economic point of view, Procedia. Environ. Sci. 38, 381–388 (2017)

    Google Scholar 

  32. J. Li, X. Meng, Y. Gao, W. Mao, T. Luo, L. Zhang, Effect of the insulation materials filling on the thermal performance of sintered hollow bricks. Case Stud. Therm. Eng. 11, 62–70 (2018)

    Article  Google Scholar 

  33. C. Hou, X. Meng, Y. Gao, W. Mao, E. Long, Effect of the insulation materials filling on the thermal performance of sintered hollow bricks under the air-conditioning intermittent operation. Case Stud. Constr. Mater. 8, 217–225 (2018)

    Google Scholar 

  34. J. Coz-Díaz, F. Álvarez-Rabanal, M. Alonso-Martínez, J.E. Martínez-Martínez, Thermal inertia characterization of multilayer lightweight walls: numerical analysis and experimental validation. Appl. Sci. 11, 5008 (2021)

    Article  Google Scholar 

  35. X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chen, X. Guo, Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China. Energy Build. 109, 361–368 (2015)

    Article  Google Scholar 

  36. M.F. Alsayed, R.A. Tayeh, Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. J. Build. Eng. 22, 101–112 (2019)

    Article  Google Scholar 

  37. D. D’Agostino, F. de’Rossi, M. Marigliano, C. Marino, F. Minichiello, Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost-optimal” methodology. J. Build. Eng. 24, 100743 (2019)

    Article  Google Scholar 

  38. K. Verichev, M. Zamorano, A. Fuentes-Sepúlveda, N. Cárdenas, M. Carpio, Adaptation and mitigation to climate change of envelope wall thermal insulation of residential buildings in a temperate oceanic climate. Energy Build. 235, 110719 (2021)

    Article  Google Scholar 

  39. I. Neya, D. Yamegueu, Y. Coulibaly, A. Messan, A.L.S. Ouedraogo, Impact of insulation and wall thickness in compressed earth buildings in hot and dry tropical regions. J. Build. Eng. 33, 101612 (2021)

    Article  Google Scholar 

  40. P.M. Cuce, E. Cuce, K. Sudhakar, A systematic review of thermal insulation performance of hollow bricks as a function of hollow geometry. Int. J. Ambient Energy 43(1), 1 (2022)

    Article  Google Scholar 

  41. M. Altin, G.Ş Yildirim, Investigation of usability of boron doped sheep wool as insulation material and comparison with existing insulation materials. Constr. Build. Mater. 331, 127303 (2022)

    Article  Google Scholar 

  42. T. Li, Q. Liu, Q. Mao, M. Chen, C. Ma, D. Wang, Y. Liu, Optimization design research of insulation thickness of exterior wall based on the orientation difference of solar radiation intensity. Appl. Therm. Eng. 223, 119977 (2023)

    Article  Google Scholar 

  43. S.I. Abdelsalam, A.M. Alsharif, Y. Abd Elmaboud, A. Abdellateef, Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon 9(5), e15916 (2023)

    Article  Google Scholar 

  44. W. He, X. Hong, X. Wu, G. Pei, Z. Hu, W. Tang, Z. Shen, J. Ji, Thermal and hydraulic analysis on a novel Trombe wall with venetian blind structure. Energy Build. 123, 50–58 (2016)

    Article  Google Scholar 

  45. Ashrae Standard, ASHRAE Handbook Fundamentals 2017, Ashrae. 16.4-16.27 (2017)

  46. S. Amjad, A. Abdelbaki, Z. Zrikem, Transfer functions method and substructuration technique for two-dimensional heat conduction problems in high thermal mass systems: application to ground coupling problems. Energy Build. 35(6), 593–604 (2003)

    Article  Google Scholar 

  47. H. Asan, Numerical computation of time lags and decrement factors for different building materials. Build. Environ. 41(5), 615–620 (2006)

    Article  Google Scholar 

  48. S.V. Patankar, Numerical heat transfer and fluid flow (Hemisphere, Washington, 1980)

    Google Scholar 

  49. B. Jamal, M. Boukendil, L. El Moutaouakil, A. Abdelbaki, Z. Zrikem, Numerical investigation of combined heat transfer through hollow brick walls. Eur. Phys. J. Plus 135, 1–15 (2020)

    Article  Google Scholar 

  50. H. Necib, S. Noureddine, S. Nadia, D. Djamila, Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings. Energy Proc. 36, 766–775 (2013)

    Article  Google Scholar 

  51. B. Belhadj, M. Bederina, Z. Makhloufi, A. Goullieux, M. Quéneudec, Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Energy Build. 87, 166–175 (2015)

    Article  Google Scholar 

  52. B. Allam, T. Nehari, M.L. Benlekkam, Building brick wall thermal management optimization and temperature control based on phase change materials integration case study of the city of Bechar, Algeria. J. Energy Storage 73, 109043 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchaib Jamal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, B., Boukendil, M., El Moutaouakil, L. et al. Thermal performance analysis of hollow brick walls in hot and dry climatic zones. Eur. Phys. J. Plus 139, 290 (2024). https://doi.org/10.1140/epjp/s13360-024-05090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05090-6

Navigation