Skip to main content
Log in

Dynamics of heterotypic soliton, high-order breather, M-lump wave, and multi-wave interaction solutions for a (\(3+1\))-dimensional Kadomtsev–Petviashvili equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we investigate a (3+1)-dimensional KP equation, which is widely used to model the behavior of nonlinear waves in plasma physics and fluid mechanics. First, the multi-soliton solutions of the equation are derived using the Hirota bilinear method. Based on the multi-soliton solutions, heterotypic soliton is obtained by setting the partial dispersion coefficient to zero. Under the complex conjugation of the parameters, high-order breather waves are derived. Additionally, the M-lump wave solutions of the equation are derived by applying the long-wave limit. To gain a deeper understanding of its physical dynamics, we conducted numerical simulations to simulate various characteristics of M-lump waves during their propagation, including their peaks, troughs, propagation velocities, and propagation trajectories. Afterward, by combining the long-wave limit with the complex conjugation of the parameters, we discuss three types of multi-wave interaction phenomena described by this equation and illustrate the collision process between waves in graphical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

No data were used in this study

References

  1. M. Tlidi, M. Taki, Rogue waves in nonlinear optics. Adv. Opt. Photon. 14(1), 87–147 (2022)

    Article  Google Scholar 

  2. W. Hereman, In: Helal, M.A. (ed.) Shallow Water Waves and Solitary Waves, pp. 203–220. Springer, New York, NY, London (2022)

  3. A. Atteya, M. El-Borie, G. Roston, A. El-Helbawy, Nonlinear dust acoustic waves in an inhomogeneous magnetized quantum dusty plasma. Waves Random Complex Media 33(2), 329–344 (2023)

    Article  ADS  Google Scholar 

  4. D.J. Korteweg, G. De Vries, Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. London, Edinburgh, Dublin Philosophical Mag. J. Sci. 39(240), 422–443 (1895)

    Article  Google Scholar 

  5. S. Rani, S. Kumar, N. Mann, On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+ 1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Opt. Quant. Electron 55(8), 731 (2023)

    Article  Google Scholar 

  6. B. Madhukalya, R. Das, K. Hosseini, D. Baleanu, E. Hincal, Effect of ion and negative ion temperatures on KdV and mKdV solitons in a multicomponent plasma. Nonlinear Dyn. 111(9), 8659–8671 (2023)

    Article  Google Scholar 

  7. G. Slathia, R. Kaur, N. Saini, Dust acoustic inertial alfvénic nonlinear structures in an electron depleted dusty plasma. Chinese J. Phys. 87, 298–310 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Conti, D. Masoero, On solutions of the Bethe Ansatz for the Quantum KdV model. Communications in Mathematical Physics, 1–56 (2023)

  9. B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk SSSR 192, 753–756 (1970)

    Google Scholar 

  10. X. Zhang, Y. Chen, X. Tang, Rogue wave and a pair of resonance stripe solitons to kp equation. Comput. Math. Appl. 76(8), 1938–1949 (2018)

    Article  MathSciNet  Google Scholar 

  11. M.J. Ablowitz, H. Segur, On the evolution of packets of water waves. J. Fluid Mech. 92(4), 691–715 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.E. Pelinovsky, Y.A. Stepanyants, Y.S. Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 51(5), 5016 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.M. Wazwaz, W. Alhejaili, S. El-Tantawy, Analytical study on two new (3+ 1)-dimensional painlevé integrable equations: Kink, lump, and multiple soliton solutions in fluid mediums. Phys. Fluids 35(9), 093119 (2023)

    Article  ADS  Google Scholar 

  14. B. Wang, Z. Ma, S. Xiong, M-lump, rogue waves, breather waves, and interaction solutions among four nonlinear waves to new (3+ 1)-dimensional Hirota bilinear equation. Nonlinear Dyn. 111(10), 9477–9494 (2023)

    Article  Google Scholar 

  15. J.-Y. Song, Y. Xiao, C.-P. Zhang, Dynamical analysis of higher-order rogue waves on the various backgrounds for the reverse space-time Fokas-Lenells equation. Appl. Math. Lett. 150, 108971 (2024)

    Article  MathSciNet  Google Scholar 

  16. Z. Li, C. Huang, B. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas–Lenells equation with cubic-quartic dispersion in optical fibers. Phys. Lett. A 465, 128714 (2023)

    Article  MathSciNet  Google Scholar 

  17. A.R. Seadawy, A. Ahmad, S.T. Rizvi, S. Ahmed, Bifurcation solitons, Y-type, distinct lumps and generalized breather in the thermophoretic motion equation via graphene sheets. Alexandria Eng. J. 87, 374–388 (2024)

    Article  Google Scholar 

  18. H. Zhang, M. Gong, J. He, B. Malomed, Two-dimensional vector solitons in Bose–Einstein-condensate mixtures. Appl. Math. Comput. 469, 128536 (2024)

    MathSciNet  Google Scholar 

  19. S. Ahmed, A.M. Mubaraki, Pulse-driven robot: motion via distinct lumps and rogue waves. Opt. Quant. Electron. 56(2), 225 (2024)

    Article  Google Scholar 

  20. R.-F. Zhang, M.-C. Li, A. Cherraf, S.R. Vadyala, The interference wave and the bright and dark soliton for two Integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Article  Google Scholar 

  21. J.-G. Liu, W.-H. Zhu, Y.-K. Wu, G.-H. Jin, Application of multivariate bilinear neural network method to fractional partial differential equations. Results Phys. 47, 106341 (2023)

    Article  Google Scholar 

  22. R. Lei, L. Tian, Z. Ma, Lump waves, bright-dark solitons and some novel interaction solutions in (3+ 1)-dimensional shallow water wave equation. Physica Scripta 99(1), 015255 (2024)

    Article  ADS  Google Scholar 

  23. M. Wang, Y.-F. Yang, Degenerate solitons in a generalized nonlinear Schrödinger equation. Nonlinear Dyn. 112(5), 3763–3769 (2024)

    Article  Google Scholar 

  24. Y. Shen, B. Tian, T.-Y. Zhou, X.-T. Gao, N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111(3), 2641–2649 (2023)

    Article  Google Scholar 

  25. B. Wang, Z. Ma, X. Liu, Dynamics of nonlinear wave and interaction phenomenon in the (3+ 1)-dimensional Hirota–Satsuma-Ito-like equation. European Phys. J. D 76(9), 165 (2022)

    Article  ADS  Google Scholar 

  26. G. Akram, M. Sadaf, M.A.U. Khan, Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)

    Article  Google Scholar 

  27. T. Yin, Z. Xing, J. Pang, Modified Hirota bilinear method to (3+ 1)-D variable coefficients generalized shallow water wave equation. Nonlinear Dyn. 111(11), 9741–9752 (2023)

    Article  Google Scholar 

  28. F. Yuan, B. Ghanbari, A study of interaction soliton solutions for the \((2+ 1) \)-dimensional Hirota–Satsuma-Ito equation. Nonlinear Dyn. 112(4), 2883–2891 (2024)

    Article  Google Scholar 

  29. A.R. Butt, N. Raza, M. Inc, R.T. Alqahtani, Complexitons, Bilinear forms and Bilinear Bäcklund transformation of a (2+ 1)-dimensional Boiti-Leon-Manna-Pempinelli model describing incompressible fluid. Chaos, Solitons Fractals 168, 113201 (2023)

    Article  Google Scholar 

  30. S. Singh, S. Saha Ray, Newly exploring the Lax pair, bilinear form, bilinear Bäcklund transformation through binary Bell polynomials, and analytical solutions for the (2+ 1)-dimensional generalized Hirota-Satsuma-Ito equation. Phys. Fluids 35(8), 087134 (2023)

    Article  ADS  Google Scholar 

  31. S.-J. Chen, Y.-H. Yin, X. Lü, Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 130, 107205 (2024)

    Article  MathSciNet  Google Scholar 

  32. S. Roy, S. Raut, R.R. Kairi, P. Chatterjee, Bilinear Bäcklund, Lax pairs, breather waves, lump waves and soliton interaction of (2+ 1)-dimensional non-autonomous Kadomtsev-Petviashvili equation. Nonlinear Dyn. 111(6), 5721–5741 (2023)

    Article  Google Scholar 

  33. S. Sáez, On the modified generalized multidimensional KP equation in plasma physics and fluid dynamics in (3+ 1) dimensions. J. Math. Chem. 61(1), 125–143 (2023)

    Article  MathSciNet  Google Scholar 

  34. S. Mahmood, H. Ur-Rehman, Existence and propagation characteristics of ion-acoustic Kadomtsev–Petviashvili (KP) solitons in nonthermal multi-ion plasmas with kappa distributed electrons. Chaos, Solitons Fractals 169, 113225 (2023)

    Article  MathSciNet  Google Scholar 

  35. A.R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas. Pramana 89, 1–11 (2017)

    Article  ADS  Google Scholar 

  36. A.R. Seadawy, K. El-Rashidy, Dispersive solitary wave solutions of Kadomtsev–Petviashvili and modified Kadomtsev–Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 8, 1216–1222 (2018)

    Article  ADS  Google Scholar 

  37. A.-M. Wazwaz, N.S. Alatawi, W. Albalawi, S. El-Tantawy, Painlevé analysis for a new (3+ 1)-dimensional KP equation: multiple-soliton and lump solutions. Europhys.Lett. 140(5), 52002 (2022)

    Article  ADS  Google Scholar 

  38. R. Hirota, Direct methods in soliton theory. Solitons, 157–176 (1980)

  39. Y.-L. Ma, A.-M. Wazwaz, B.-Q. Li, Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    Article  MathSciNet  Google Scholar 

  40. Y.-L. Ma, A.-M. Wazwaz, B.-Q. Li, Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear maccari system. Nonlinear Dyn. 111(19), 18331–18344 (2023)

    Article  Google Scholar 

  41. Z. Zhang, X. Yang, B. Li, Q. Guo, Y. Stepanyants, Multi-lump formations from lump chains and plane solitons in the KP1 equation. Nonlinear Dyn. 111(2), 1625–1642 (2023)

    Article  Google Scholar 

  42. L. He, J. Zhang, Z. Zhao, M-lump and interaction solutions of a (2+1)-dimensional extended shallow water wave equation. European Phys. J. Plus 136(2), 1–14 (2021)

    Article  Google Scholar 

Download references

Funding

This project is supported by funding of Visual Computing and Virtual Reality Key Laboratory of Sichuan Province (Grant No.SCVCVR2023.12VS), and Scientific Research Foundation of Engineering and Technical College of Chengdu University of Technology (Grant No. C122022022).

Author information

Authors and Affiliations

Authors

Contributions

JZ was contributed conceptualization, methodology, and writing-original draft. ZM was performed validation and methodology. RL was involved in software and investigation. JL and YW were attributed software

Corresponding author

Correspondence to Zhimin Ma.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Ma, Z., Lei, R. et al. Dynamics of heterotypic soliton, high-order breather, M-lump wave, and multi-wave interaction solutions for a (\(3+1\))-dimensional Kadomtsev–Petviashvili equation. Eur. Phys. J. Plus 139, 289 (2024). https://doi.org/10.1140/epjp/s13360-024-05082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05082-6

Navigation