Skip to main content
Log in

Raman Scattering Spectroscopy and Photoluminescence of GaAs Nanowires

  • Optical-Physical Methods of Research and Measurement
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Experimental data on studying the phonon and optical properties of GaAs nanowires with orientation (111) located on a gold substrate with the help of Raman scattering spectroscopy (RSS) and photoluminescence (PL) are presented. Structural parameters of nanowires are determined by the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. In the micro-RSS and micro-PL spectra of a single GaAs nanowire, the modes of optical phonons of GaAs and their overtones up to the third order and an exciton luminescence band are observed. In the micro-PL spectra, anisotropy of the PL intensity is observed; the maximum/minimum signal is observed at the polarization-vector direction along/across the wire. Mapping of nano-PL of a single GaAs nanowire is performed with a spatial resolution of 20 nm, which is significantly smaller than the diffraction limit. When passing to the nanometer scale, a plasmon amplification of the signal of the near-field exciton nano-PL conditioned by the metallized AFM-needle is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. B. Ketterer, ‘‘Raman spectroscopy of GaAs nanowires: Doping mechanisms and fundamental properties,’’ PhD Thesis (École Polytechnique Fédérale De Lausanne, Lausanne, 2011).

  2. M. B. Johnston and H. J. Joyce, ‘‘Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices,’’ Prog. Quantum Electron. 85, 100417 (2022). https://doi.org/10.1016/j.pquantelec.2022.100417

  3. F. Giazotto, P. Spathis, S. Roddaro, S. Biswas, F. Taddei, M. Governale, and L. Sorba, ‘‘A Josephson quantum electron pump,’’ Nat. Phys. 7, 857–861 (2011). https://doi.org/10.1038/nphys2053

    Article  Google Scholar 

  4. R. Yi, X. Zhang, C. Li, B. Zhao, J. Wang, Z. Li, X. Gan, L. Li, Z. Li, F. Zhang, L. Fang, N. Wang, P. Chen, W. Lu, L. Fu, J. Zhao, H. H. Tan, and C. Jagadish, ‘‘Self-frequency-conversion nanowire lasers,’’ Light: Sci. Appl. 11, 120 (2022). https://doi.org/10.1038/s41377-022-00807-7

    Article  ADS  Google Scholar 

  5. S. Hamedi, Z. Kordrostami, and A. Yadollahi, ‘‘Artificial neural network approaches for modeling absorption spectrum of nanowire solar cells,’’ Neural Comput. Appl. 31, 8985–8995 (2019). https://doi.org/10.1007/s00521-019-04406-3

    Article  Google Scholar 

  6. A. F. Smith, X. Liu, T. L. Woodard, T. Fu, T. Emrick, J. M. Jimnez, D. R. Lovley, and J. Yao, ‘‘Bioelectronic protein nanowire sensors for ammonia detection,’’ Nano Res. 13, 1479–1484 (2020). https://doi.org/10.1007/s12274-020-2825-6

    Article  Google Scholar 

  7. M. R. Philip, D. D. Choudhary, M. Djavid, K. Q. Le, J. Piao, and H. P. T. Nguyen, ‘‘High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy,’’ J. Sci.: Adv. Mater. Devices 2, 150–155 (2017). https://doi.org/10.1016/j.jsamd.2017.05.009

    Article  Google Scholar 

  8. X. X. Han, R. S. Rodriguez, C. L. Haynes, Yu. Ozaki, and B. Zhao, ‘‘Surface-enhanced Raman spectroscopy,’’ Nat. Rev. Methods Primers 1, 87 (2022). https://doi.org/10.1038/s43586-021-00083-6

    Article  Google Scholar 

  9. E. Abbe, ‘‘Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: I. Die Construction von Mikroskopen auf Grund der Theorie,’’ Arch. Mikroskop. Anat. 9, 413–418 (1873).

    Article  Google Scholar 

  10. E. Cara, L. Mandrile, A. Sacco, A. M. Giovannozzi, A. M. Rossi, F. Celegato, N. De Leo, P. Hönicke, Yv. Kayser, B. Beckhoff, D. Marchi, A. Zoccante, M. Cossi, M. Laus, L. Boarino, and F. F. Lupi, ‘‘Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy,’’ J. Mater. Chem. C 8, 16513–16519 (2020). https://doi.org/10.1039/D0TC04364H

    Article  Google Scholar 

  11. D. Gorman, ‘‘Photoluminescence and excitation studies of semiconductors,’’ MSc Thesis (Dublin City Univ., Dublin, 2001).

  12. A. V. Senichev, V. G. Talalaev, I. V. Shtrom, H. Blumtritt, G. E. Cirlin, J. Schilling, C. Lienau, and P. Werner, ‘‘Nanospectroscopic imaging of twinning superlattices in an individual GaAs-AlGaAs core–shell nanowire,’’ ACS Photonics 1, 1099–1106 (2014). https://doi.org/10.1021/ph5002022

    Article  Google Scholar 

  13. A. Senichev, P. Corfdir, O. Brandt, M. Ramsteiner, S. Breuer, J. Schilling, L. Geelhaar, and P. Werner, ‘‘Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire,’’ Nano Res. 11, 4708–4721 (2018). https://doi.org/10.1007/s12274-018-2053-5

    Article  Google Scholar 

  14. C. M. Finnie and P. W. Bohn, ‘‘Near-field photoluminescence of microcrystalline arsenic oxides produced in anodically processed gallium arsenide,’’ Appl. Phys. Lett. 74, 1096–1098 (1999). https://doi.org/10.1063/1.123454

    Article  ADS  Google Scholar 

  15. H. Lee, D. Yu. Lee, M. G. Kang, Ye. Koo, T. Kim, and K.-D. Park, ‘‘Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging,’’ Nanophotonics 9, 3089–3110 (2020). https://doi.org/10.1515/nanoph-2020-0079

    Article  Google Scholar 

  16. J. A. Schuller, E. S. Barnard, W. Cai, Yo. C. Jun, J. S. White, and M. L. Brongersma, ‘‘Plasmonics for extreme light concentration and manipulation,’’ Nat. Mater. 9, 193–204 (2010). https://doi.org/10.1038/nmat2630

    Article  ADS  Google Scholar 

  17. F. Shao and R. Zenobi, ‘‘Tip-enhanced Raman spectroscopy: Principles, practice, and applications to nanospectroscopic imaging of 2D materials,’’ Anal. Bioanal. Chem. 411, 37–61 (2019). https://doi.org/10.1007/s00216-018-1392-0

    Article  Google Scholar 

  18. A. Y. Cho and J. R. Arthur, ‘‘Molecular beam epitaxy,’’ Prog. Solid State Chem. 10, 157–191 (1975). https://doi.org/10.1016/0079-6786(75)90005-9

    Article  Google Scholar 

  19. L. S. Basalaeva, N. N. Kurus, E. E. Rodyakina, K. V. Anikin, and A. G. Milekhin, ‘‘Fabrication of Au and Ag-coated AFM probes for tip-enhanced Raman spectroscopy,’’ J. Phys.: Conf. Ser. 2015, 012013 (2021). https://doi.org/10.1088/1742-6596/2015/1/012013

  20. H. E. Ruda and A. Shik, ‘‘Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,’’ Phys. Rev. B 72, 115308 (2005). https://doi.org/10.1103/physrevb.72.115308

  21. Z. Y. Yang and Y. F. Lu, ‘‘Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,’’ Opt. Express 15, 9510–9519 (2007). https://doi.org/10.1364/oe.15.009510

    Article  ADS  Google Scholar 

  22. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, ‘‘Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,’’ Nano Lett. 11, 1049–1054 (2011). https://doi.org/10.1021/nl103906f

    Article  ADS  Google Scholar 

  23. S. Jin, E. DeMarco, M. J. Pellin, O. K. Farha, G. P. Wiederrecht, and J. T. Hupp, ‘‘Distance-engineered plasmon-enhanced light harvesting in CdSe quantum dots,’’ J. Phys. Chem. Lett. 4 (20), 3527–3533 (2013). https://doi.org/10.1021/jz401801v

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Medvedev and L.A. Nenasheva for producing probes for nano-PL.

Funding

This work is supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Milekhin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalachev, I.V., Milekhin, I.A., Emel’yanov, E.A. et al. Raman Scattering Spectroscopy and Photoluminescence of GaAs Nanowires. Optoelectron.Instrument.Proc. 59, 659–666 (2023). https://doi.org/10.3103/S8756699023060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023060055

Keywords:

Navigation