Skip to main content
Log in

Reconfigurable intelligent surfaces with solar energy harvesting

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we compute the throughput of wireless communications using Reconfigurable Intelligent Surfaces (RIS) when the source harvests energy using a solar panel. Harvesting duration is also optimized to enhance the performance of wireless communications when RIS is used. We derive the statistics of the Signal to Noise Ratio (SNR). We show that the SNR is the product of a Gaussian and a chisquare random variables (r.v.). We consider solar energy harvesting for Rayleigh channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liang, H., Su, J., & Liu, S. (2010). Reliability evaluation of distribution system containing microgrid, sElectricity Distribution (CICED). In: China International Conference, pp. 1–7.

  2. Xu, X., Zhao, Y., Tao, L., Xu, Z. (2021). Resource Allocation Strategy for Dual UAVs-Assisted MEC System with Hybrid Solar and RF Energy Harvesting. In 3rd International conference on computer communication and the internet (ICCCI).

  3. Roy, R. B., Rokonuzzaman, Md., Amin, N., Khatun M., Mahmuda, A., Sanath, R., Saifur, M., Nadarajah, S. R., Kazi, S., Pasupuleti, M. J. (2021). A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access, Volume: 9.

  4. Soonsawad, P., Eun J., Kang, S. J. (2021). Improved energy harvesting with one-time adjusted solar panel for BLE Beacon. In IEEE 93rd vehicular technology conference (VTC2021-Spring).

  5. Tuan, H.D., Nasir, A. A., Savkin, A. V., Poor, H. V., Dutkiewicz, E. (2021). MPC-based UAV navigation for simultaneous solar-energy harvesting and two-way communications. In IEEE Journal on Selected Areas in Communications, Early Access Article. Abstract

  6. Chamith, C., Seneke, L., Jong-Wook. (2021). A self-resonant boost converter for solar energy harvesting with 97% tracking efficiency, 80 mV self-startup and ultra-wide range source tracking. In IEEE Custom Integrated Circuits Conference (CICC).

  7. Chen, Y., Cheng, X., Yao, Y., Wan, B. (2021). Short interval solar power prediction for energy harvesting with low computation cost on edge computation network. In IEEE 11th annual computing and communication workshop and conference (CCWC).

  8. Ku, M. L., Lin, T. J. (2021). Neural network-based power control prediction for solar-powered energy harvesting communications. In IEEE Internet of Things Journal, Early Access Article.

  9. Hamza, M., Rehman, M. Ur, Riaz, A., Maqsood, Z., Khan, W. T. (2021). Hybrid dual band radio frequency and solar energy harvesting system for making battery-less sensing nodes. In IEEE Radio and Wireless Symposium (RWS).

  10. An, W., Hong, L., Luo, Y., Ma, K., Ma, J., Huang, X. (2021). A wideband dual-function solar cell dipole antenna for both energy harvesting and wireless communications. In IEEE Transactions on Antennas and Propagation, Volume: 69, Issue: 1.

  11. Park, J., Jeong, M. G., Kang, J. G., & Yoo, C. (2021). Solar energy-harvesting buck-boost converter with battery-charging and battery-assisted modes. IEEE Transactions on Industrial Electronics, 68(3), 2163–2172.

    Article  Google Scholar 

  12. Yadav, D. (2020). Solar energy harvesting by carbon nanotube optical rectenna: A review. Signal Processing and Cyber Security (iSSSC): IEEE International symposium on sustainable energy.

  13. Hamied, F. M., Abdel, M., Korany R., Hussein, M., Obayya, Salah S.A. (2020) Design and Analysis of Hexagonal Dipole Nano-Rectenna Based on MIIM Diode for Solar Energy Harvesting. In 8th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC).

  14. Liu, W., Yin, W., Xie, J., Luo, R., Hu, S. (2020). Do we really need complicated solar energy harvesting circuits for low cost sensor nodes? In IEEE 2nd International conference on circuits and systems (ICCS).

  15. Aliakbari, A., Vahidinasab, V. (2020). Optimal charging scheduling of solar plugin hybrid electric vehicles considering on-the-road solar energy harvesting. In 10th Smart Grid Conference (SGC).

  16. Poulose, P., Sreejaya, P. (2020). Energy harvesting technology using dye sensitized solar cell for low power devices. In International conference on power electronics and renewable energy applications (PEREA).

  17. Kamran, M. A., Ali, S., Abbas, H., Murtaza, A., Shehzad, M. K., Khan, A., Pervez, S. H. (2020). Development of experimental model for water desalination by harvesting solar energy. In IEEE 23rd International Multitopic Conference (INMIC).

  18. Dragulinescu, A., Dragulinescu, A. M. C. (2020). Solar cell types and technologies with applications in energy harvesting. In IEEE 26th International symposium for design and technology in electronic packaging (SIITME).

  19. Rasheed Abdul Haq K. P., Harigovindan, V. P. (2020). Water quality monitoring and reporting system for aquaculture with solar energy harvesting. In 2020 International conference on smart technologies in computing, electrical and electronics (ICSTCEE).

  20. Ghosh, D., Bandyopadhyay, S. K., Taki, G. S. (2020). Green energy harvesting from waste plastic materials by solar driven microwave pyrolysis. In 2020 4th International conference on electronics, materials engineering and nano-technology (IEMENTech).

  21. Khoshhava, M., Ayaz, Eydi, M. (2020). A maximum power point tracking strategy based on self tuning adaptive control for solar energy harvesting application. In 2020 28th Iranian conference on electrical engineering (ICEE).

  22. Phuc, T. H. (2020). Effects of high-energy electron irradiation on the InGaP/GaAs heterojunction photosensor powered by an on-chip gaas solar cell for energy harvesting. In 2020 International conference on advanced technologies for communications (ATC).

  23. Lee, T. J., Su, P. K., Wang, C. C. (2020). 20V HV energy harvesting circuit with ACC/CV mode and MPPT control for a 5 W solar panel. In 2020 2nd International conference on smart power and internet energy systems (SPIES).

  24. Concepcion, N. D. G., Villanueva, A. R., Dalumpines, A. K., Magwili, G. Pacis, M. C. (2020). Design of an Azimuth-Altitude Dual Axis Tracking System (AADAT) for Energy Solar Harvesting using Photovoltaic V-trough Concentrator. In 2020 11th IEEE control and system graduate research colloquium (ICSGRC).

  25. Young, S. A. Q., Lee, N., Close, S. (2020). Harvesting electromagnetic energy from hypervelocity impacts for solar system exploration. In 33rd General assembly and scientific symposium of the international union of radio science.

  26. Zareie, M., Eren, S. (2020). A new digital control technique for solar energy harvesting systems in dc micro-grids. In 2020 IEEE conference on control technology and applications (CCTA).

  27. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transaction Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  28. Proakis, J. (2007). Digital Communications (5th ed.). Mac Graw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The transmitted energy per symbol \(E_s\) has the following Gaussian PDF

$$\begin{aligned} f_{E_s}(x)=\frac{1}{\sqrt{2\pi \sigma ^2}}exp(-\frac{[x-m(t)]^2}{2\sigma ^2}), \end{aligned}$$
(28)

The Mellin Tranform (MT) of \(E_s\) is computed as

$$\begin{aligned}{} & {} M_{E_s}(s)=\int _0^{+\infty }f_{E_s}(x)x^{s-1}dx\nonumber \\{} & {} =\int _0^{+\infty }\frac{1}{\sqrt{2\pi \sigma ^2}}exp(-\frac{[x-m(t)]^2}{2\sigma ^2})x^{s-1}dx \end{aligned}$$
(29)

We deduce

$$\begin{aligned}{} & {} M_{E_s}(s)=\frac{1}{\sqrt{2\pi \sigma ^2}}exp(-\frac{m(t)^2}{2\sigma ^2})\int _0^{+\infty }exp(-\frac{x^2}{2\sigma ^2})exp(\frac{xm(t)}{\sigma ^2})x^{s-1}dx\nonumber \\{} & {} =\frac{1}{\sqrt{2\pi \sigma ^2}}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\frac{m(t)^k}{k!\sigma ^{2k}}\nonumber \\{} & {} \int _0^{+\infty }exp(-\frac{x^2}{2\sigma ^2})x^{k+s-1}dx \end{aligned}$$
(30)

Let \(y=\frac{x^2}{2\sigma ^2}\), we deduce

$$\begin{aligned}{} & {} M_{E_s}(s)=\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\frac{m(t)^k\sigma ^{s-k-2}}{k!} \sqrt{2}^{s+k-3}\int _0^{+\infty }exp(-y)y^{0.5k+0.5s-1}dx \nonumber \\{} & {} =\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{s+k-3}\frac{m(t)^k\sigma ^{s-k-2}}{k!}\Gamma (\frac{s+k}{2}) \end{aligned}$$
(31)

where \(\Gamma (.)\) is the Gamma function.

The SNR \(\gamma =\frac{\lambda _1\lambda _2E_sA^2}{N_0}=\frac{\lambda _1\lambda _2Y}{N_0}\) where \(Y=A^2E_s\). \(A^2\) depends on channels gains from the source to RIS and from RIS to destination D. \(E_s\) depends on harvested power using a solar PV system. Therefore, \(A^2\) and \(E_s\) are independent and the MT of Y is the product of MT of \(A^2\) and that of \(E_s\):

$$\begin{aligned} M_{Y}(s)=M_{E_s}(s)M_{A^2}(s). \end{aligned}$$
(32)

We need to compute the MT of \(A^2\) to deduce \(M_Y(s)\) and by the inverse MT to obtain the PDF of Y and that of SNR \(\gamma =\frac{\lambda _1\lambda _2Y}{N_0}\). The PDF of \(A^2\) is written as [28]

$$\begin{aligned} f_{A^2}(y)=0.5e^{-0.5(y+\Delta ^2)}I_{-0.5}( \sqrt{\Delta ^2y})(\frac{y}{\Delta ^2})^{-0.25} \end{aligned}$$
(33)

where \(\Delta ^2=\frac{m_A^2}{\sigma _A^2}\).

The Mellin transform of PDF of \(A^2\) is equal to

$$\begin{aligned} M_{A^2}(s)=0.5e^{-\frac{\Delta ^2}{2}}\sqrt{\Delta }\int _0^{+\infty }I_{-0.5}( \sqrt{\Delta ^2y})y^{s-\frac{5}{4}}e^{-\frac{y}{2}}dy. \end{aligned}$$
(34)

We have

$$\begin{aligned} I_n(y)=\sum _{q=0}^{+\infty }\frac{y^{2q+n}}{2^{2q+n}q!\Gamma (q+n+1)} \end{aligned}$$
(35)

We deduce

$$\begin{aligned} M_{A^2}(s)=0.5e^{-\frac{\Delta ^2}{2}}\sqrt{\Delta }\sum _{q=0}^{+\infty }\frac{\Delta ^{2q-0.5}}{2^{q-0.5}q! \Gamma (q+0.5)}\int _0^{+\infty }y^{s+q-\frac{3}{2}}e^{-\frac{y}{2}}dy. \end{aligned}$$
(36)

We have

$$\begin{aligned} \int _0^{+\infty }e^{-0.5y}y^{s+q-1.5}dy=\Gamma (s+q-0.5)2^{s+q-0.5}. \end{aligned}$$
(37)

Therefore, we obtain

$$\begin{aligned} M_{A^2}(s)=e^{-\frac{\Delta ^2}{2}}\sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}\Gamma (s+q-0.5)2^{s-q-1}. \end{aligned}$$
(38)

We deduce \(M_Y(s)\) from (31)

$$\begin{aligned} M_Y(s)=\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{s+k-3}\frac{m(t)^k\sigma ^{s-k-2}}{k!}\Gamma (\frac{s+k}{2}) \end{aligned}$$
$$\begin{aligned} \times e^{-\frac{\Delta ^2}{2}}\sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}\Gamma (s+q-0.5)2^{s-q-1} \end{aligned}$$
(39)

The PDF of Y is computed using the inverse MT

$$\begin{aligned} f_Y(y)=\frac{1}{2\pi j}\int _{e-j\infty }^{e+j\infty }y^{-s}M_Y(s)ds. \end{aligned}$$
(40)

Therefore, we have

$$\begin{aligned}{} & {} f_Y(y)=e^{-\frac{\Delta ^2}{2}}\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{k-3}\frac{m(t)^k\sigma ^{-k-2}}{k!} \sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}2^{-q-1}\nonumber \\{} & {} \times \frac{1}{2\pi j}\int _{e-j\infty }^{e+j\infty }(\frac{y}{2 \sqrt{2}\sigma })^{-s}\Gamma (s+q-0.5)\Gamma (\frac{s+k}{2})ds. \end{aligned}$$
(41)

We deduce the expression of the PDF of Y

$$\begin{aligned}{} & {} f_Y(y)=e^{-\frac{\Delta ^2}{2}}\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{k-3}\frac{m(t)^k\sigma ^{-k-2}}{k!} \sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}2^{-q-1}\nonumber \\{} & {} \times H_{1,1}^{1,1}(\frac{y}{2 \sqrt{2}\sigma }|_{q-0.5,1}^{1-0.5k,-0.5}). \end{aligned}$$
(42)

where \(H_{m,n}^{p,q}()\) is the Fox H function [28].

We deduce the PDF of SNR \(\gamma =\frac{\lambda _1\lambda _2Y}{N_0}\) [28]

$$\begin{aligned}{} & {} f_{\gamma }(y)=\frac{N_0}{\lambda _1\lambda _2}e^{-\frac{\Delta ^2}{2}}\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{k-3}\frac{m(t)^k\sigma ^{-k-2}}{k!} \sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}2^{-q-1}\nonumber \\{} & {} \times H_{1,1}^{1,1}(\frac{yN_0}{\lambda _1\lambda _22 \sqrt{2}\sigma }|_{q-0.5,1}^{1-0.5k,-0.5}). \end{aligned}$$
(43)

We use the following result on Laplace Transform (LT) of the Fox H function [28]

$$\begin{aligned} LT[x^{\rho -1}H_{p,q}^{m,n}(ax^{\sigma }|^{a_p,A_p}_{b_q,B_q})] =u^{-\rho }H_{p+1,q}^{m,n+1}(au^{-\sigma }|^{1-\rho ,\sigma ,a_p,A_p}_{b_q,B_q}). \end{aligned}$$
(44)

We deduce the Moment Generating Function (MGF) of SNR as

$$\begin{aligned}{} & {} MGF_{\gamma }(u)=LT(f_{\gamma }(y))=\int _0^{+\infty }e^{-uy}f_{\gamma }(y)dy \nonumber \\ =\frac{N_0}{\lambda _1\lambda _2}e^{-\frac{\Delta ^2}{2}}\frac{1}{\sqrt{\pi }}exp(-\frac{m(t)^2}{2\sigma ^2})\sum _{k=0}^{+\infty }\sqrt{2}^{k-3}\frac{m(t)^k\sigma ^{-k-2}}{k!} \sum _{q=0}^{+\infty }\frac{\Delta ^{2q}}{q!\Gamma (q+0.5)}2^{-q-1}\nonumber \\{} & {} \times \frac{1}{u}H_{2,1}^{1,2}(\frac{N_0}{u\lambda _1\lambda _22 \sqrt{2}\sigma }|_{q-0.5,1}^{0,1,1-0.5k,-0.5}). \end{aligned}$$
(45)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemaa, H. Reconfigurable intelligent surfaces with solar energy harvesting. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03719-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03719-z

Keywords

Navigation