Skip to main content
Log in

Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Preschooling is a critical time for intervention in children with autism spectrum disorder (ASD); thus, we analyzed brain tissue component volumes (BTCVs) and clinical indicators in preschool children with ASD to identify new biomarkers for early screening.

Methods

Eighty preschool children (3–6 years) with ASD were retrospectively included. The whole-brain myelin content (MyC), white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and non-WM/GM/MyC/CSF brain component volumes were obtained using synthetic magnetic resonance imaging (SyMRI). Clinical data, such as intelligence scores, autism diagnostic observation schedule-calibrated severity scores, age at first production of single words (AFSW), age at first production of phrases (AFP), and age at walking onset (AWO), were also collected. The correlation between the BTCV and clinical data was evaluated, and the effect of BTCVs on clinical data was assessed by a regression model.

Results

WM and GM volumes were positively correlated with intelligence scores (both P < 0.001), but WM and GM did not affect intelligence scores (P = 0.116, P = 0.290). AWO was positively correlated with AFSW and AFP (both P < 0.001). The multivariate linear regression analysis revealed that MyC, AFSW, AFP, and AWO were significantly different (P = 0.005, P < 0.001, P < 0.001).

Conclusions

This study revealed positive correlations between WM and GM volumes and intelligence scores. Whole-brain MyC affected AFSW, AFP, and AWO in preschool children with ASD. Noninvasive quantification of BTCVs via SyMRI revealed a new visualizable and quantifiable biomarker (abnormal MyC) for early ASD screening in preschool children.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset.

References

  1. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–54.

    Article  CAS  PubMed  Google Scholar 

  2. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med. 2015;45:601–13.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou H, Xu X, Yan W, Zou X, Wu L, Luo X, et al. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull. 2020;36:961–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369:60–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35:147–68.

    Article  PubMed  Google Scholar 

  7. Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in autism spectrum disorder: narrative review and recent advances. J Magn Reson Imaging. 2022;55:1613–24.

    Article  PubMed  Google Scholar 

  8. Gotham K, Pickles A, Lord C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord. 2009;39:693–705.

    Article  PubMed  Google Scholar 

  9. Waizbard-Bartov E, Ferrer E, Young GS, Heath B, Rogers S, Wu Nordahl C, et al. Trajectories of autism symptom severity change during early childhood. J Autism Dev Disord. 2021;51:227–42.

    Article  PubMed  Google Scholar 

  10. Ristori MV, Quagliariello A, Reddel S, Ianiro G, Vicari S, Gasbarrini A, et al. Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients. 2019;11:2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denisova K, Lin Z. The importance of low IQ to early diagnosis of autism. Autism Res. 2023;16:122–42.

    Article  PubMed  Google Scholar 

  12. Hus V, Taylor A, Lord C. Telescoping of caregiver report on the autism diagnostic interview-revised. J Child Psychol Psychiatry. 2011;52:753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garrido D, Petrova D, Watson LR, Garcia-Retamero R, Carballo G. Language and motor skills in siblings of children with autism spectrum disorder: a meta-analytic review. Autism Res. 2017;10:1737–50.

    Article  PubMed  Google Scholar 

  14. Uljarević M, Hedley D, Alvares GA, Varcin KJ, Whitehouse AJO. Relationship between early motor milestones and severity of restricted and repetitive behaviors in children and adolescents with autism spectrum disorder. Autism Res. 2017;10:1163–8.

    Article  PubMed  Google Scholar 

  15. Vaccarino FM, Smith KM. Increased brain size in autism-what it will take to solve a mystery. Biol Psychiatry. 2009;66:313–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardan AY, Muddasani S, Vemulapalli M, Keshavan MS, Minshew NJ. An MRI study of increased cortical thickness in autism. Am J Psychiatry. 2006;163:1290–2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ecker C, Ginestet C, Feng Y, Johnston P, Lombardo MV, Lai M, et al. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiat. 2013;70:59–70.

    Article  Google Scholar 

  19. Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry. 2012;169:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peterson BS, Liu J, Dantec L, Newman C, Sawardekar S, Goh S, et al. Using tissue microstructure and multimodal MRI to parse the phenotypic heterogeneity and cellular basis of autism spectrum disorder. J Child Psychol Psychiatry. 2022;63:855–70.

    Article  PubMed  Google Scholar 

  21. Park M, Moon Y, Han S, Kim HK, Moon W. Myelin loss in white matter hyperintensities and normal-appearing white matter of cognitively impaired patients: a quantitative synthetic magnetic resonance imaging study. Eur Radiol. 2019;29:4914–21.

    Article  PubMed  Google Scholar 

  22. Hagiwara A, Warntjes M, Hori M, Andica C, Nakazawa M, Kumamaru KK, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol. 2017;52:647–57.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maekawa T, Hagiwara A, Hori M, Andica C, Haruyama T, Kuramochi M, et al. Effect of gadolinium on the estimation of myelin and brain tissue volumes based on quantitative synthetic MRI. AJNR Am J Neuroradiol. 2019;40:231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ouellette R, Mangeat G, Polyak I, Warntjes M, Forslin Y, Bergendal Å, et al. Validation of rapid magnetic resonance myelin imaging in multiple sclerosis. Ann Neurol. 2020;87:710–24.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JS, Cho H, Shin J, Park S, Min Y, Park B, et al. Diagnostic performance of synthetic relaxometry for predicting neurodevelopmental outcomes in premature infants: a feasibility study. Eur Radiol. 2023;33:7340–51.

    Article  PubMed  Google Scholar 

  26. Lin L, Chen Y, Dai Y, Yan Z, Zou M, Zhou Q, et al. Quantification of myelination in children with attention-deficit/hyperactivity disorder: a comparative assessment with synthetic MRI and DTI. Eur Child Adolesc Psychiatry. 2023. https://doi.org/10.1007/s00787-023-02297-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Battle DE. Diagnostic and statistical manual of mental disorders (DSM). Codas. 2013;25:191–2.

    PubMed  Google Scholar 

  28. Ma S, Liu Y, Cun Y, Wang Q, Fu M, Wu K, et al. Preoperative serum cortisone levels are associated with cognition in preschool-aged children with tetralogy of fallot after corrective surgery: new evidence from human populations and mice. World J Pediatr. 2024;20:173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Watkins MW, Canivez GL, Dombrowski SC, McGill RJ, Pritchard AE, Holingue CB, et al. Long-term stability of Wechsler intelligence scale for children-fifth edition scores in a clinical sample. Appl Neuropsychol Child. 2022;11:422–8.

    Article  PubMed  Google Scholar 

  30. Zhou J, Tong J, Ru X, Teng Y, Geng M, Yan S, et al. Placental inflammatory cytokines mRNA expression and preschool children’s cognitive performance: a birth cohort study in China. BMC Med. 2023;21:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lord C, Risi S, Lambrecht L, Cook EHJ, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.

    Article  CAS  PubMed  Google Scholar 

  32. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    Article  CAS  PubMed  Google Scholar 

  33. West J, Warntjes JBM, Lundberg P. Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol. 2012;22:998–1007.

    Article  CAS  PubMed  Google Scholar 

  34. Jung RE, Haier RJ. The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci. 2007;30:135–54.

    Article  PubMed  Google Scholar 

  35. Deary IJ, Cox SR, Hill WD. Genetic variation, brain, and intelligence differences. Mol Psychiatry. 2022;27:335–53.

    Article  PubMed  Google Scholar 

  36. Nisbett RE, Aronson J, Blair C, Dickens W, Flynn J, Halpern DF, et al. Intelligence: new findings and theoretical developments. Am Psychol. 2012;67:130–59.

    Article  PubMed  Google Scholar 

  37. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.

    Article  CAS  PubMed  Google Scholar 

  38. Graciarena M, Seiffe A, Nait-Oumesmar B, Depino AM. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front Cell Neurosci. 2018;12:517.

    Article  CAS  PubMed  Google Scholar 

  39. O’Muircheartaigh J, Dean DC 3rd, Ginestet CE, Walker L, Waskiewicz N, Lehman K, et al. White matter development and early cognition in babies and toddlers. Hum Brain Mapp. 2014;35:4475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, et al. Mapping early brain development in autism. Neuron. 2007;56:399–413.

    Article  CAS  PubMed  Google Scholar 

  42. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17:103–11.

    Article  CAS  PubMed  Google Scholar 

  43. O’Muircheartaigh J, Dean DCR, Dirks H, Waskiewicz N, Lehman K, Jerskey BA, et al. Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci. 2013;33:16170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones EJH, Gliga T, Bedford R, Charman T, Johnson MH. Developmental pathways to autism: a review of prospective studies of infants at risk. Neurosci Biobehav Rev. 2014;39:1–33.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Landa R, Garrett-Mayer E. Development in infants with autism spectrum disorders: a prospective study. J Child Psychol Psychiatry. 2006;47:629–38.

    Article  PubMed  Google Scholar 

  46. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. Science. 2014;346:318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, et al. Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci. 2013;33:19499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8:1148–50.

    Article  CAS  PubMed  Google Scholar 

  49. Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12:1370–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iverson JM. Developmental variability and developmental cascades: lessons from motor and language development in infancy. Curr Dir Psychol Sci. 2021;30:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bedford R, Pickles A, Lord C. Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder. Autism Res. 2016;9:993–1001.

    Article  PubMed  Google Scholar 

  52. Magiati I, Tay XW, Howlin P. Cognitive, language, social and behavioural outcomes in adults with autism spectrum disorders: a systematic review of longitudinal follow-up studies in adulthood. Clin Psychol Rev. 2014;34:73–86.

    Article  PubMed  Google Scholar 

  53. Saccenti L, Hagiwara A, Andica C, Yokoyama K, Fujita S, Kato S, et al. Myelin measurement using quantitative magnetic resonance imaging: a correlation study comparing various imaging techniques in patients with multiple sclerosis. Cells. 2020;9:393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walker L, Gozzi M, Lenroot R, Thurm A, Behseta B, Swedo S, et al. Diffusion tensor imaging in young children with autism: biological effects and potential confounds. Biol Psychiatry. 2012;72:1043–51.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Biberacher V, Schmidt P, Keshavan A, Boucard CC, Righart R, Sämann P, et al. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage. 2016;142:188–97.

    Article  PubMed  Google Scholar 

  56. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, et al. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology. 2000;216:672–82.

    Article  CAS  PubMed  Google Scholar 

  57. Lebel C, Deoni S. The development of brain white matter microstructure. Neuroimage. 2018;182:207–18.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81801757), Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515010369 and 2023A1515010256), and Guangzhou Municipal Science and Technology Project (No. 202201020421).

Author information

Authors and Affiliations

Authors

Contributions

ZX, LWS and ZFY contributed equally to this work. ZX and WSH contributed to data collection and analysis, and manuscript editing. LWS and ZFY contributed to data collection and analysis. ZSS, DYY, LXW, and SLS contributed to data collection. GRM contributed to data collection and analysis, manuscript editing, and project development. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Shi-Huan Wang or Ruo-Mi Guo.

Ethics declarations

Ethical approval

This study was approved by the Institutional Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-Sen University (II2023-003–01), and written informed consent was obtained from the guardians of all children.

Conflict of interest

No conflict of interest or industry support exists in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Lin, WS., Zou, FY. et al. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset. World J Pediatr (2024). https://doi.org/10.1007/s12519-024-00800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12519-024-00800-7

Keywords

Navigation