Skip to main content
Log in

Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. P. F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement,” Corresp. Math. Phys. 10, 113–121 (1838).

    Google Scholar 

  2. V. I. Arnold, Catastrophe Theory (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  3. V. I. Arnold, “Hard” and “Soft” Mathematical Models (Mosk. Tsentr Neprer. Mat. Obrazovan., Moscow, 2014) [in Russian].

    Google Scholar 

  4. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,” Byull. Mosk. Gos. Univ. Mat. Mekh. 1 (6), 1–26 (1937).

    Google Scholar 

  5. R. A. Fisher, “The wave of advance of advantageous genes,” Ann. Eugen. 7 (4), 353–369 (1937). https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

    Article  Google Scholar 

  6. J. B. J. Fourier, Theorie Analytique de la Chaleur (Didot, Paris, 1822).

    Google Scholar 

  7. H. Berestycki, H. Francois, and L. Roques, “Analysis of the periodically fragmented environment model: I.  Species persistence,” J. Math. Biol. 51, 75–113 (2005). https://doi.org/10.1007/s00285-004-0313-3

    Article  MathSciNet  PubMed  Google Scholar 

  8. H. Berestycki, H. Francois, and L. Roques, “Analysis of the periodically fragmented environment model: II. Biological invasions and pulsating travelling fronts,” J. Math. Pures Appl. 84, 1101–1146 (2005). https://doi.org/10.1016/j.matpur.2004.10.006

    Article  MathSciNet  Google Scholar 

  9. B. Pethame, Parabolic Equations in Biology: Growth, Reaction, Movement and Diffusion (Springer, Cham, 2015).

    Book  Google Scholar 

  10. A. A. Davydov, “Existence of optimal stationary states of exploited populations with diffusion,” Proc. Steklov Inst. Math. 310, 124–130 (2020). https://doi.org/10.1134/S0081543820050090

    Article  MathSciNet  Google Scholar 

  11. A. A. Davydov, “Optimal steady state of distributed population in periodic environment,” AIP Conf. Proc. 2333, 120007 (2021). https://doi.org/10.1063/5.0041960

  12. A. A. Davydov and D. A. Melnik, “Optimal states of distributed exploited populations with periodic impulse harvesting,” Proc. Steklov Inst. Math. 315, Suppl. 1, S1–S8 (2021). https://doi.org/10.1134/S0081543821060079

    Article  Google Scholar 

  13. A. A. Davydov and E. V. Vinnikov, “Optimal cyclic dynamic of distributed population under permanent and impulse harvesting,” Dynamic Control and Optimization: DCO 2021 (Springer, Cham, 2023), pp. 101–112. https://doi.org/10.1007/978-3-031-17558-9_5

    Book  Google Scholar 

  14. D. V. Tunitsky, “On solvability of semilinear second-order elliptic equations on closed manifolds,” Izv. Math. 86 (5), 925–942 (2022). https://doi.org/10.1070/IM9261

    Article  MathSciNet  Google Scholar 

  15. D. V. Tunitsky, “On initial value problem for semilinear second order parabolic equations on spheres,” Proceedings of the 15th International Conference on Management of Large-Scale System Development (MLSD), Septem-ber 26–28, 2022, Moscow, Russia (IEEE Explore, 2022), pp. 1–4. https://doi.org/10.1109/MLSD55143.2022.9934193

  16. L. I. Nicolaescu, Lectures on the Geometry of Manifolds (World Scientific, Hackensack, N.J., 2021).

    Google Scholar 

  17. D. V. Tunitsky, “On solvability of second-order semilinear elliptic equations on spheres,” in Proceedings of the 14th International Conference on Management of Large-Scale System Development (MLSD), Septem-ber 27–29, 2021, Moscow, Russia (IEEE Explore, 2021), pp. 1–4. https://doi.org/10.1109/MLSD52249.2021.9600203

  18. R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (Am. Math. Soc., Providence, RI, 1997).

    Google Scholar 

  19. J. L. Lions, Equations differentielles operationnelles et problemes aux limites (Springer-Verlag, Berlin, 1961).

    Book  Google Scholar 

  20. R. S. Palais, Seminar on the Atiyah–Singer Index Theorem (Princeton Univ. Press, Princeton, N.J., 1965).

    Google Scholar 

  21. R. O. Wells, Differential Analysis on Complex Manifolds (Springer, New York, 2008).

    Book  Google Scholar 

  22. B. O. Koopman, “The theory of search: III. The optimum distribution of search effort,” Oper. Res. 5 (5), 613–626 (1957).

    Article  MathSciNet  Google Scholar 

  23. V. V. Zhikov, “Mathematical problems of search theory,” in Proceedings of the Vladimir Polytechnic Institute (Vysshaya Shkola, Moscow, 1968), pp. 263–270 [in Russian].

  24. G. M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, Hackensack, N.J., 2005).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-11-00223, and was performed at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Vinnikov, A. A. Davydov or D. V. Tunitsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnikov, E.V., Davydov, A.A. & Tunitsky, D.V. Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting. Dokl. Math. 108, 472–476 (2023). https://doi.org/10.1134/S1064562423701387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562423701387

Keywords:

Navigation