Skip to main content
Log in

On Derivation of Equations of Gravitation from the Principle of Least Action, Relativistic Milne–McCrea Solutions, and Lagrange Points

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

Equations of gravitation in the form of Vlasov–Poisson relativistic equations with Lambda term are derived from the classical principle of least action. Hamilton–Jacobi consequences are used to obtain cosmological solutions. The properties of Lagrange points are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. A. Fock, The Theory of Space, Time, and Gravitation (Pergamon, Oxford, 1964).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  3. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  4. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Springer-Verlag, New York, 1984, 1985, 1990), Parts I–III.

  5. V. V. Vedenyapin and M. A. Negmatov, “Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov’s form,” Theor. Math. Phys. 170 (3), 394–405 (2012).

    Article  MathSciNet  Google Scholar 

  6. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic, and hydrodynamical consequences,” Izv. Math. 81 (3), 505–541 (2017).

    Article  MathSciNet  Google Scholar 

  7. V. V. Vedenyapin and M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics: The Lagrange identity, the Godunov form, and critical mass” J. Math. Sci. 202, 769–782 (2014).

    Article  MathSciNet  Google Scholar 

  8. Y. Choquet-Bruhat, General Relativity and Einstein’s Equations (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  9. Yu. N. Orlov and I. P. Pavlotsky, “BBGKY-hierarchies and Vlasov’s equations in postgalilean approximation,” Physica A 151, 318 (1988).

    Article  ADS  Google Scholar 

  10. T. Okabe, P. J. Morrison, J. E. Friedrichsen III, and L. C. Shepley, “Hamiltonian dynamics of spatially-homogeneous Vlasov–Einstein systems,” Phys. Rev. D 84, 024011 (2011).

  11. F. Pegoraro, F. Califano, G. Manfredi, and P. J. Morrison, “Theory and applications of the Vlasov equation,” Eur. Phys. J. D 69, 68 (2015).

    Article  ADS  Google Scholar 

  12. C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhäuser, Boston, 2002).

    Book  Google Scholar 

  13. Y. Choquet-Bruhat, Introduction to General Relativity, Black Holes, and Cosmology (Oxford Univ. Press, New York, 2015).

    Google Scholar 

  14. G. Rein and A. D. Rendall, “Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data,” Commun. Math. Phys. 150, 561–583 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. E. Kandrup and P. J. Morrison, “Hamiltonian structure of the Vlasov–Einstein system and the problem of stability for spherical relativistic star clusters,” Ann. Phys. 225, 114–166 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. V. Kozlov, General Theory of Vortices (Udmurt. Univ., Izhevsk, 1998) [in Russian].

    Google Scholar 

  17. V. V. Kozlov, “The hydrodynamics of Hamiltonian systems,” Moscow Univ. Mech. Bull. 38 (6), 9–23 (1983).

    Google Scholar 

  18. V. V. Vedenyapin, V. I. Parenkina, and S. R. Svir-shchevskii, “Derivation of the equations of electrodynamics and gravity from the principle of least action,” Comput. Math. Math. Phys. 62 (6), 983–995 (2022).

    Article  MathSciNet  Google Scholar 

  19. V. V. Vedenyapin and M. A. Negmatov, “On the topology of steady-state solutions of hydrodynamic and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method,” Dokl. Math. 87 (2), 240–244 (2013).

    Article  MathSciNet  Google Scholar 

  20. V. V. Vedenyapin, M. Yu. Voronina, and A. A. Russkov, “Derivation of the equations of electrodynamics and gravitation from the principle of least action,” Dokl. Phys. 65 (12), 413–417 (2020).

    Article  ADS  CAS  Google Scholar 

  21. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, “The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system,” Eur. Phys. J. Plus 136, 670 (2021).

    Article  Google Scholar 

  22. V. V. Vedenyapin, “On derivation of equations of electrodynamics and gravitation from the principle of least action, the Hamilton–Jacobi method, and cosmological solutions,” Dokl. Math. 105 (3), 178–182 (2022).

    Article  MathSciNet  Google Scholar 

  23. E. A. Milne, Relativity, Gravitation, and World-Structure (Oxford Univ. Press, Oxford, 1935).

    Google Scholar 

  24. W. H. McCrea and E. A. Milne, “Newtonian universes and the curvature of space,” Q. J. Math. 5, 73–80 (1934).

    Article  ADS  Google Scholar 

  25. V. G. Gurzadyan, “The cosmological constant in the McCrea–Milne cosmological scheme,” Observatory 105, 42 (1985).

    ADS  Google Scholar 

Download references

Funding

Petrov’s research was performed in the framework of the state assignment, project no. 123021700055-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vedenyapin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapin, V.V., Bay, A.A. & Petrov, A.G. On Derivation of Equations of Gravitation from the Principle of Least Action, Relativistic Milne–McCrea Solutions, and Lagrange Points. Dokl. Math. 108, 481–485 (2023). https://doi.org/10.1134/S1064562423701417

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562423701417

Keywords:

Navigation