Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T02:54:39.527Z Has data issue: false hasContentIssue false

Transient versus steady-state solutions: a qualitative study

Published online by Cambridge University Press:  27 March 2024

D. Van Eester*
Affiliation:
Laboratory for Plasma Physics, ERM-KMS, B-1000 Brussels, Belgium
E.A. Lerche
Affiliation:
Laboratory for Plasma Physics, ERM-KMS, B-1000 Brussels, Belgium JET, Culham Science Centre, Abingdon OX14 3DB, UK
E. Pawelec
Affiliation:
JET, Culham Science Centre, Abingdon OX14 3DB, UK
E. Solano
Affiliation:
Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain
*
Email address for correspondence: d.van.eester@fz-juelich.de

Abstract

In view of the ultimate goal of producing long-lasting quasi-stationary discharges required for future fusion power stations, the numerical study of steady-state solutions of equations describing the particle and energy balance rightfully gets ample attention. Transient states may, however, differ significantly from the steady state ultimately reached and will – in practice – impact on the actual fate of the discharge. Using brutally simple models, the present paper highlights a number of aspects to illustrate this dynamics. It e.g. shows the different signature of wave and beam heating, potentially giving room to transiently trigger desirable effects that may allow us to better steer a discharge.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angioni, C. 2021 Impurity transport in tokamak plasmas, theory, modelling and comparison with experiments. Plasma Phys. Control. Fusion 63, 073001.CrossRefGoogle Scholar
Babuska, I. 1973 The finite element method with Lagrangian multipliers. Numer. Math. 20, 179192.CrossRefGoogle Scholar
Bertelli, N., Jaeger, E.F., Hosea, J.C., Phillips, C.K., Berry, L., Bonoli, P.T., Gerhardt, S.P., Green, D., LeBlanc, B., Perkins, R.J., et al. 2016 Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes. Nucl. Fusion 56, 016019.CrossRefGoogle Scholar
Bourdelle, C. 2015 Turbulent Transport in Tokamak Plasmas: bridging theory and experiment. Habilitation à diriger des recherches, Aix-Marseille Université, https://theses.hal.science/tel-01113299/document.CrossRefGoogle Scholar
Brambilla, M. & Bilato, R. 2009 Advances in numerical simulations of ion cyclotron heating of non-Maxwellian plasmas. Nucl. Fusion 49, 085004.CrossRefGoogle Scholar
Breslau, J., Gorelenkova, M., Poli, F., Sachdev, J., Pankin, A., Perumpilly, G., Yuan, X. & Glant, L. 2018 TRANSP is a 1.5D equilibrium and transport solver for interpretation and prediction of tokamak discharges. TRANSP. Computer Software. USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24). doi:10.11578/dc.20180627.4.CrossRefGoogle Scholar
Coster, D., Basiuk, V., Pereverzev, G. & Kalupin, D. 2010 The European transport solver. IEEE Trans. Plasma Sci. 38 (9), 20852092.CrossRefGoogle Scholar
Crank, J. & Nicolson, P. 1947 A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43 (1), 5067.CrossRefGoogle Scholar
Federici, G., Maviglia, F. & Holden, J. 2022 DEMO: outcome of the pre-conceptual design phase. Special Issue of Fusion Engineering and Design on the European Programme towards DEMO; various papers.Google Scholar
Gaffey, J.D. 1976 Energetic ion distribution resulting from neutral beam injection in tokamaks. J. Plasma Phys. 16 (2), 149169.CrossRefGoogle Scholar
Garzotti, L., Challis, C., Dumont, R., Frigione, D., Graves, J., Lerche, E., Mailloux, J., Mantsinen, M., Rimini, F., Casson, F., et al. 2019 Scenario development for D-T operation at JET. Nucl. Fusion 59, 076037.CrossRefGoogle Scholar
Hellsten, T., Johnson, T., Carlsson, J. & Eriksson, L.-G. 2004 Effects of finite drift orbit width and RF-induced spatial transport on plasma heated by ICRH. Nucl. Fusion 44 (8), 892.CrossRefGoogle Scholar
Hoelzl, M., Huijsmans, G.T.A., Pamela, S.J.P., Bécoulet, M., Nardon, E., Artola, F.J., Nkonga, B., Atanasiu, C.V., Bandaru, V., Bhole, A., et al. 2021 The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion 61, 065001.CrossRefGoogle Scholar
Jaeger, E.F., Berry, L.A., D'Azevedo, E., Batchelor, D.B. & Carter, M.D. 2001 All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas. Phys. Plasmas 8 (5), 15731583.CrossRefGoogle Scholar
Jucker, M., Graves, J.P., Cooper, W.A., Mellet, N., Johnson, T. & Brunner, S. 2011 Integrated modeling for ion cyclotron resonant heating in toroidal systems. Comput. Phys. Commun. 182 (4), 912925.CrossRefGoogle Scholar
Karney, C.F.F. 1986 Fokker-Planck and quasilinear codes. Comput. Phys. Rep. 4, 183.CrossRefGoogle Scholar
Kazakov, Y., Van Eester, D. & Ongena, J. 2015 Plasma heating in present-day and future fusion machines. In 12th Carolus Magnus Summer School on Plasma and Fusion Energy Physics, ed. K. Crombé. Schriften des Forschungszentrums Julich Reihe Energie and Umwelt/Energy and Environment, vol. 298, pp. 290–297. Forschungszentrum Julich GmbH Zentralbibliothek.Google Scholar
Lennholm, M., McKean, R., Mooney, R., Tvalashvili, G., Artaserse, G., Baruzzo, M., Belonohy, E., Calabro, G., Carvalho, I.S., Challis, C.D., et al. 2021 Statistical assessment of ELM triggering by pellets on JET. Nucl. Fusion 61, 036035.CrossRefGoogle Scholar
Lerche, E.A., Lennholm, M., Carvalho, I.S., Dumortier, P., Durodié, F., Van Eester, D., Graves, J., Jacquet, P., Murari, A. & JET Contributors 2017 Sawtooth pacing with on-axis ICRH modulation in JET-ILW. Nucl. Fusion 57, 036027.CrossRefGoogle Scholar
Maggi, C., et al. 2023 Special nuclear fusion issue of papers presenting results from the JET tritium and deuterium/tritium campaign. Nucl. Fusion 63, 112001112015.CrossRefGoogle Scholar
Mailloux, J., et al. 2022 Overview of JET results for optimising ITER operation. Nucl. Fusion 62, 042026.CrossRefGoogle Scholar
Mantica, P., Angioni, C., Baiocchi, B., Baruzzo, M., Beurskens, M.N.A., Bizarro, J.P.S., Budny, R.V., Buratti, P., Casati, A., Challis, C., et al. 2011 Ion heat transport studies in JET. Plasma Phys. Control. Fusion 53, 124033.CrossRefGoogle Scholar
Mantica, P., Bonanomi, N., Mariani, A., Carvalho, P., Delabie, E., Garcia, J., Hawkes, N., Johnson, T., Keeling, D., Sertoli, M., et al. 2021 The role of electron-scale turbulence in the JET tokamak: experiments and modelling. Nucl. Fusion 61, 096014.CrossRefGoogle Scholar
Romanelli, M., Coelho, R., Coster, D. & Ferreira, J. 2020 Code integration, data verification, and models validation using the ITER Integrated Modeling and Analysis System (IMAS) in EUROfusion. Fusion Sci. Technol. 76 (5), 17.CrossRefGoogle Scholar
Stix, T.H. 1992 Waves in Plasmas. AIP.Google Scholar
Van Eester, D. 1994 Self-consistent modelling of ion cyclotron resonance heating. Plasma Phys. Control. Fusion 36, 13271354.CrossRefGoogle Scholar
Van Eester, D. & Koch, R. 1998 A variational principle for studying fast-wave mode conversion. Plasma Phys. Control. Fusion 40, 19491975.CrossRefGoogle Scholar