Skip to main content
Log in

Collective effect of preformed plasma channel and plasma density ramp on second harmonic generation of Laguerre–Gaussian laser beam in plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Present study demonstrates the relativistic optical guiding of Laguerre–Gaussian laser beam in preformed plasma channel with density ramp. Relativistic nonlinearity leads to electronic mass variation when the plasma electrons oscillate at high velocities close to the light’s velocity. Focusing is always contradicted by the diffractive nature of the laser beam. Preformed plasma channel and an exponential density ramp have been used to overcome natural diffraction of laser and thus lead to arrest power loss. Studies have also been done on the incident laser beam’s second harmonic generation. Laguerre–Gaussian profile of the laser beam is taken into account which is a non-uniform kind of irradiated intensity along the laser wavefront. Laser self-focusing has been detected from the differential equation which itself has been derived by the method of moments where different moments of the laser field signify different physical quantities. Numerical results have been obtained by Runge–Kutta 4th-order method. It has been determined that the density transition and the plasma channel both significantly increase the second harmonic yield of the incident laser beam. It is further observed that the different modes \((L_m^n)\) of the LG laser beam are more productive for harmonic generation than the Gaussian beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data that support the findings of the study are available within the article.

References

  1. W. Mori, C. Joshi, J. Dawson, D. Forslund, J. Kindel, Evolution of self-focusing of intense electromagnetic waves in plasma. Phys. Rev. Lett. 60(13), 1298 (1988)

    Article  ADS  Google Scholar 

  2. P. Young, H. Baldis, R. Drake, E. Campbell, K. Estabrook, Direct evidence of ponderomotive filamentation in a laser-produced plasma. Phys. Rev. Lett. 61(20), 2336 (1988)

    Article  ADS  Google Scholar 

  3. A. Willes, P. Robinson, D. Melrose, Second harmonic electromagnetic emission via Langmuir wave coalescence. Phys. Plasmas 3(1), 149–159 (1996)

    Article  ADS  Google Scholar 

  4. A.S. Pirozhkov, S.V. Bulanov, T.Z. Esirkepov, M. Mori, A. Sagisaka, H. Daido, Attosecond pulse generation in the relativistic regime of the laser-foil interaction: the sliding mirror model. Phys. Plasmas 13(1), 013107 (2006)

    Article  ADS  Google Scholar 

  5. T. Tajima, V. Malka, Laser plasma accelerators. Plasma Phys. Controlled Fusion 62(3), 034004 (2020)

    Article  ADS  Google Scholar 

  6. C. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008), 538–541 (2004)

    Article  ADS  Google Scholar 

  7. G.-Q. Liao, Y.-T. Li, Review of intense terahertz radiation from relativistic laser-produced plasmas. IEEE Trans. Plasma Sci. 47(6), 3002–3008 (2019)

    Article  ADS  Google Scholar 

  8. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, Md perry and rj mason phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  9. C. Deutsch, H. Furukawa, K. Mima, M. Murakami, K. Nishihara, Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77(12), 2483 (1996)

    Article  ADS  Google Scholar 

  10. H. Hora, New aspects for fusion energy using inertial confinement. Laser Part. Beams 25(1), 37–45 (2007)

    Article  ADS  Google Scholar 

  11. C. Durfee Iii, H. Milchberg, Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71(15), 2409 (1993)

    Article  ADS  Google Scholar 

  12. Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, E. Esarey, Guiding of high-intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett. 77(20), 4186 (1996)

    Article  ADS  Google Scholar 

  13. J. Wadhwa, A. Singh, Enhanced second harmonic generation of Hermite–Gaussian laser beam in plasma having density transition. Laser Phys. 30(4), 046001 (2020)

    Article  ADS  Google Scholar 

  14. N. Kant, M.A. Wani, A. Kumar, Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp. Optics Commun. 285(21–22), 4483–4487 (2012)

    Article  ADS  Google Scholar 

  15. M. Aggarwal, S. Vij, N. Kant, Propagation of cosh gaussian laser beam in plasma with density ripple in relativistic-ponderomotive regime. Optik 125(18), 5081–5084 (2014)

    Article  ADS  Google Scholar 

  16. A. Singh, N. Gupta, Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel. Phys. Plasmas 22(1), 013102 (2015)

    Article  ADS  Google Scholar 

  17. H.S. Ghotra, L. Singh, Self-focusing of low order LG laser beam in gaussian plasma. Laser Phys. Lett. 20(9), 096001 (2023)

    Article  ADS  Google Scholar 

  18. M. Aggarwal, S. Vij, N. Kant, Self-focusing of quadruple gaussian laser beam in an inhomogenous magnetized plasma with ponderomotive non-linearity: effect of linear absorption. Commun. Theor. Phys. 64(5), 565 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.A. Wani, N. Kant, Investigation of relativistic self-focusing of Hermite-cosine-Gaussian laser beam in collisionless plasma. Optik 127(11), 4705–4709 (2016)

    Article  ADS  Google Scholar 

  20. J. Wadhwa, A. Singh, Generation of second harmonics by a self-focused hermite-gaussian laser beam in collisionless plasma. Phys. Plasmas 26(6) (2019)

  21. N. Gupta, N. Singh, A. Singh, Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys. Plasmas 22(11) (2015)

  22. A. Singh, N. Gupta, Second-harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma. Laser Part. Beams 34(1), 1–10 (2016)

    Article  ADS  Google Scholar 

  23. N. Erokhin, V. Zakharov, S. Moiseev, Second harmonic generation by an electromagnetic wave incident on inhomogeneous plasma. Sov. Phys. JETP 29, 101 (1969)

    ADS  Google Scholar 

  24. S. Wilks, J. Dawson, W. Mori, T. Katsouleas, M. Jones, Photon accelerator. Phys. Rev. Lett. 62(22), 2600 (1989)

    Article  ADS  Google Scholar 

  25. M. Sodha, J. Sharma, D. Tewari, R. Sharma, S. Kaushik, Plasma wave and second harmonic generation. Plasma Phys. 20(8), 825 (1978)

    Article  ADS  Google Scholar 

  26. F. Brunel, Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit. JOSA B 7(4), 521–526 (1990)

    Article  ADS  Google Scholar 

  27. J. Stamper, R. Lehmberg, A. Schmitt, M. Herbst, F. Young, J. Gardner, S. Obenschain, Evidence in the second-harmonic emission for self-focusing of a laser pulse in a plasma. Phys. fluids 28(8), 2563–2569 (1985)

    Article  ADS  Google Scholar 

  28. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81(2), 445 (2009)

    Article  ADS  Google Scholar 

  29. P. Sharma, H.S. Ghotra, N. Kant, Enhanced third harmonic generation by a laser over a Ag and n–InSb rippled metallic surface. Laser Phys. 29(1), 016001 (2018)

    Article  ADS  Google Scholar 

  30. C. Liu, V. Tripathi, Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15(2) (2008)

  31. N. Kant, D. Nandan Gupta, H. Suk, Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas. Phys. Plasmas 19(1) (2012)

  32. H. Hora, A. Ghatak, New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A 31(5), 3473 (1985)

    Article  ADS  Google Scholar 

  33. S. Kaur, A. Sharma, H.A. Salih, Resonant second harmonic generation of a gaussian electromagnetic beam in a collisional magnetoplasma. Phys. Plasmas 16(4), 042509 (2009)

    Article  ADS  Google Scholar 

  34. R. Agarwal, B.K. Pandey, A. Sharma, Resonant second harmonic generation of a millimeter wave in a plasma filled waveguide. Phys. Scr. 63(3), 243 (2001)

    Article  ADS  Google Scholar 

  35. N. Singh, A. Singh, The effect of plasma channel on the self-distortion of laser pulse propagating through the collisionless plasma channel. J. Nonlinear Opt. Phys. Mater. 23(03), 1450027 (2014)

    Article  ADS  Google Scholar 

  36. H.A. Salih, V.K. Tripathi, B.K. Pandey, Second-harmonic generation of a gaussian laser beam in a self created magnetized plasma channel. IEEE Trans. Plasma Sci. 31(3), 324–328 (2003)

    Article  ADS  Google Scholar 

  37. H. Brandi, P.M. Neto, E. Guerra, Second-harmonic generation by intense lasers in inhomogeneous plasmas. Phys. Rev. E 54(1), 1001 (1996)

    Article  ADS  Google Scholar 

  38. H.K. Dua, N. Kant, V. Thakur, Second harmonic generation by ultra-fast lasers in plasma. J. Phys. Conf. Ser. 1531, 012008 (2020)

    Article  Google Scholar 

  39. A. Bhatia, K. Walia, A. Singh, Second harmonic generation of intense Laguerre–Gaussian beam in relativistic plasma having an exponential density transition. Optik 244, 167608 (2021)

    Article  ADS  Google Scholar 

  40. A. Bhatia, K. Walia, A. Singh, Influence of self-focused Laguerre–Gaussian laser beam on second harmonic generation in collisionless plasma having density transition. Optik 245, 167747 (2021)

    Article  ADS  Google Scholar 

  41. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Soviet Phys. USPEKHI 10(5), 609 (1968)

    Article  ADS  Google Scholar 

  42. M. Sodha, A. Ghatak, V. Tripathi, V self focusing of laser beams in plasmas and semiconductors. In: Progress in Optics vol. 13, pp. 169–265. Elsevier, Amsterdam (1976)

  43. S. Vlasov, V. Petrishchev, V. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971)

    Article  ADS  Google Scholar 

  44. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20(7), 1176–1179 (1977)

    Article  ADS  Google Scholar 

  45. A. Singh, K. Walia, Relativistic self-focusing and self-channeling of gaussian laser beam in plasma. Appl. Phys. B 101, 617–622 (2010)

    Article  ADS  Google Scholar 

  46. P. Kad, A. Singh, Electron acceleration and spatio-temporal variation of Laguerre–Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137(8), 885 (2022)

    Article  Google Scholar 

  47. A. Bhatia, K. Walia, A. Singh, Second-harmonic generation of intense Laguerre Gaussian beam in collisional plasma: effect of nonlinear absorption. Chin. J. Phys. 81, 206–218 (2023)

    Article  MathSciNet  Google Scholar 

  48. W. Wang, B. Shen, X. Zhang, L. Zhang, Y. Shi, Z. Xu, Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser. Sci. Rep. 5(1), 8274 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Human and Research Development by providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh.

Ethics declarations

Conflict of interest

The author declares that they have no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, A., Walia, K. & Singh, A. Collective effect of preformed plasma channel and plasma density ramp on second harmonic generation of Laguerre–Gaussian laser beam in plasma. Eur. Phys. J. Plus 139, 293 (2024). https://doi.org/10.1140/epjp/s13360-024-04990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04990-x

Navigation