Skip to main content
Log in

Spin Resistivity in a Metallic Channel Induced by Antiferromagnetic Approximation Effect

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This study presents experimental evidence of a potential alteration in the spin configuration of a conducting channel induced by the proximity effect of a highly frustrated antiferromagnetic insulator. Dicopper chloride trihydroxide Cu2(OH)3Cl was employed as the highly frustrated antiferromagnetic insulator, while copper (Cu) served as the normal metal counterpart. Upon applying a voltage of 70 V to the sample volume, a copper conductive channel emerged within the antiferromagnetic insulator matrix. Literature reports indicate that Cu2(OH)3Cl undergoes two magnetic transitions at TN1 ~ 18 K and TN2 ~ 6.4 K. Notably, an increase in resistance was experimentally observed precisely at the magnetic transition temperatures of Cu2(OH)3Cl. This observation gains particular interest when considering the potential formation of a singlet state among the conductive channel spins influenced by the magnetism of Cu2(OH)3Cl. Consequently, speculation arises that frustration might act as a “glue,” facilitating the establishment of the singlet state within the conductive channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available upon reasonable request from the corresponding authors.

References

  1. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO3 SrTiO3 heterointerface. Nature 427, 423 (2004)

    Article  ADS  Google Scholar 

  2. A.D. Caviglia, N. Reyren, S. Thiel, L.F. Kourkotis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Rueetschi, M. Gabay, D.A. Muller, J.M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317, 1196 (2007)

    Article  ADS  Google Scholar 

  3. W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  4. J. Nogués, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999)

    Article  ADS  Google Scholar 

  5. P.G. De Gennes, Boundary effects in superconductors. Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  6. I. Bozoic et al., Giant proximity effect in cuprate superconductors. Phys. Rev. Lett. 93(15), 157002 (2004)

    Article  ADS  Google Scholar 

  7. E.L. Fjærbu, N. Rohling, A. Brataas, Superconductivity at metalantiferromagnetic insulator interfaces. Phys. Rev. B 100, 125432 (2019)

    Article  ADS  Google Scholar 

  8. Ø. Johansen, A. Kamra, C. Ulloa, A. Brataas, R.A. Duine, Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019)

    Article  ADS  Google Scholar 

  9. E. Erlandsen, A. Kamra, A. Brataas, A. Sudb, Enhancement of superconductivity mediated by antiferromagnetic squeezed mágnons. Phys. Rev. B 100, 100503 (2019)

    Article  ADS  Google Scholar 

  10. F.J. Romero et al., Resistive switching in graphene oxide. Front. Mater. 7, 17 (2020)

    Article  ADS  Google Scholar 

  11. C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, H. Qian, Conduction mechanisms, dynamics and stability in ReRAMs. Microelectronic. Eng. 187–188, 121–133 (2018)

    Google Scholar 

  12. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  13. J.D. Grice, J.T. Szymanski, J.L. Jambor, The crystal structure of clinoatacamite, a new polymorph of Cu (OH) Cl. Canad. Mineral. 34(1), 73–78, (1996)

  14. T. Malcherek and J. Schlüter, Cu MgCl (OH) and the bond-valence parameters of the OH-Cl bond. Acta crystallogr. Section B. 63, 157–60 (2007)

  15. A.S. Wills, J.Y. Henry, On the crystal and magnetic ordering structures of clinoatacamite, γ – Cu2(OD)3, a proposed valence bond solid. J. Condens. Matter. 20, 472206 (2008)

    Article  ADS  Google Scholar 

  16. X.G. Zheng, K. Nishiyamam, Geometric frustration in a new material system M2X(OH)3. Physica B 156, 374–375 (2006)

    Google Scholar 

  17. X.G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, H. Yamada, K. Nishikubo, C.N. Xu, Antiferromagnetic transition in polymorphous mineral of the natural cuprates atacamite and botallackite Cu2Cl(OH)3. Phys. Rev. B 71, 174404 (2005)

    Article  ADS  Google Scholar 

  18. X.G. Zheng, T. Kawae, Y. Kashitani, C.S. Li, N. Tateiwa, K. Takeda, H. Yamada, C.N. Xu, Y. Ren, Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. Phys. Rev. B 71, 052409 (2005)

    Article  ADS  Google Scholar 

  19. X.G. Zheng, H. Kubozono, K. Nishiyama, W. Higemoto, T. Kawae, A. Koda, C.N. Xu, Coexistence of long-range order and fluctuation in geometrically frustrated clinoatacamite Cu2Cl(OH)3. Phys. Rev. Lett. 95, 057201 (2005)

    Article  ADS  Google Scholar 

  20. A.S. Wills, T.G. Perring, S. Raymond, B. F˚Ak, J.-Y. Henry, M. Telling, Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, γ-Cu2(OD)3Cl, a proposed valence bond solid (VBS). J. Phys. Conf. Ser. 145, 012056 (2009)

    Article  Google Scholar 

  21. H. Morodomi, K. Ienaga, Y. Inagaki, T. Kawae, M. Hagiwara, X.G. Zheng, Magnetic field dependence of specific heat in clinoatacamite Cu2Cl(OH)3. J. Phys. Conf. Ser. 200, 032047 (2010)

    Article  Google Scholar 

  22. E. Khatami, J.S. Helton, M. Rigol, Numerical study of the thermodynamics of clinoatacamite. Phys. Rev. B 85, 064401 (2012)

    Article  ADS  Google Scholar 

  23. S.-H. Lee, H. Kikuchi, Y. Qiu, B. Lake, Q. Huang, K. Habicht, K. Kiefer, Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4−x(OD)6Cl2. Nature Mater. 6, 853 (2007)

    Article  ADS  Google Scholar 

  24. C.L. Lu, X. Chen, S. Dong, K.F. Wang, H.L. Cai, J.M. Liu, D. Li, Z.D. Zhang, Ru-doping-induced ferromagnetism in charge-ordered La0.4Ca0.6MnO3. Phys. Rev. B 79, 245105 (2009)

    Article  ADS  Google Scholar 

  25. J. Du, D. Li, Y.B. Li, N.K. Sun, J. Li, Z.D. Zhang, Abnormal magnetoresistance in ε-(Mn1-xFex)3.25Ge antiferromagnets. Phys. Rev. B 76, 094401 (2007)

    Article  ADS  Google Scholar 

  26. Y.Q. Zhang, Z.D. Zhang, J. Aarts, Charge-order melting and magnetic phase separation in thin films of Pr0.7Ca0.3MnO3. Phys. Rev. B 79, 224422 (2009)

    Article  ADS  Google Scholar 

  27. M.A. Mcguire, A.D. Christianson, A.S. Sefat, B.C. Sales, M.D. Lumsden, R. Jin, E.A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J.W. Brill, R.P. Hermann, M.T. Sougrati, F. Grandjean, G.J. Long, Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Phys. Rev. B 78, 094517 (2008)

    Article  ADS  Google Scholar 

  28. F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, Transport properties and origin of ferromagnetism in (Ga, Mn)As. Phys. Rev. B 57, R2037 (1998)

    Article  ADS  Google Scholar 

  29. A.E. Petrova, E.D. Bauer, V. Krasnorussky, S.M. Stishov, Behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition. Phys. Rev. B 74, 092401 (2006)

    Article  ADS  Google Scholar 

  30. F.C. Schwerer, L.J. Cuddy, Spin-disorder scattering in iron- and nickel-base alloys. Phys. Rev. B 2, 1575 (1970)

    Article  ADS  Google Scholar 

  31. P.-G. De Gennes, J. Friedel, Anomalies de résistivité dans certains métaux magnétiques. J. Phys. Chem. Solids 4, 71 (1958)

    Article  ADS  Google Scholar 

  32. K. Akabli, H.T. Diep, Temperature dependence of the spin resistivity in ferromagnetic thin films: Monte Carlo simulations. Phys. Rev. B 77, 165433 (2008)

    Article  ADS  Google Scholar 

  33. K. Akabli, H.T. Diep, S. Reynal, Effects of ferromagnetic magnetic ordering and phase transition on the resistivity of spin current. J. Phys. Condens. Matter 19, 356204 (2007)

    Article  ADS  Google Scholar 

  34. C. Haas, Spin-disorder scattering and magnetoresistance of magnetic semiconductors. Phys. Rev. 168, 531 (1968)

    Article  ADS  Google Scholar 

  35. K. Akabli, Y. Magnin, Masataka Oko, Isao Harada, H. T. Diep. Theory and simulation of spin transport in antiferromagnetic semiconductors: Application to MnTe. Phys. Rev. B. 84, 024428 (2011)

  36. Y. Magnin, K. Akabli, H. T. Diep, Isao Harad. Behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition. Comp. Mat. Sci. 49, S204 (2010)

  37. Dahn-Tai Hoang, Yann Magnin, H. T. Diep Spin resistivity in the frustrated j1 - j2 model. Mod. Phys. Lett. B. 25, 12n13 (2011).

  38. Ko Munakata, T.H. Geballe, M.R. Beasley. Quenching of impurity spins at Cu/CuO interfaces: An antiferromagnetic proximity effect. Phys. Rev. B. 84, 161405(R) (2011).

  39. A. Sherman, M. Schreiber. Excitations near the boundary between a metal and a Mott insulator. J. Phys. Conf. Ser. 200, 012184 (2010)

Download references

Acknowledgements

This work was made possible through the generous support of the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Financing Code 001 for a period of 1 year. I extend my gratitude to the “Ministry of Science, Technology, and Innovations” and the “National Council of Scientific and Technological Development – CNPq” for their invaluable financial support, which sustained this research endeavor over a span of 3 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dyvison Pedreira Pimentel.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, D.P. Spin Resistivity in a Metallic Channel Induced by Antiferromagnetic Approximation Effect. Braz J Phys 54, 81 (2024). https://doi.org/10.1007/s13538-024-01443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01443-9

Keywords

Navigation