Skip to main content
Log in

Soft Sensor Modeling of Self-Organizing Interval Type-2 Fuzzy Neural Network Based on Adaptive Quantum-Behaved Particle Swarm Optimization Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this study, a self-organizing interval type-2 fuzzy neural network (SOIT2FNN) based on the Adaptive Quantum-behaved Particle Swarm Optimization (AQPSO) algorithm is proposed as a solution to the soft sensor modeling problem of effluent total phosphorus in the wastewater treatment process. An AQPSO algorithm is proposed to train and optimize the SOIT2FNN soft sensor model's structure and parameters in order to improve forecasting accuracy. Firstly the number of rules and parameters of SOIT2FNN are mapped to the spatial position of each particle of AQPSO, which is convenient for the parameter and structure optimization of the network model. The weighted average optimal position and the adaptive shrinkage coefficient are introduced in order to enhance the global search ability of PSO and ensure the robustness and convergence of the algorithm during the optimization process. By dynamically adjusting the network structure, the network size of each particle approximates the network size of an ideal particle, thereby improving the search efficiency and optimization results of the model. Finally, the proposed AQPSO-SOIT2FNN was applied to the Mackey–Glass chaotic time series prediction and soft sensor modeling of total phosphorus in wastewater treatment effluent. The results of the experiments show that the proposed AQPSO-SOIT2FNN is capable of producing a relatively compact network topology with high identification and prediction accuracy. address uncertainty satisfactorily, which is computationally more implementable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Dupas, R., Delmas, M., Dorioz, J.M., et al.: Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic. 48, 396–407 (2015)

    Article  Google Scholar 

  2. Jin, L., Zhang, G., Tian, H.: Current state of sewage treatment in China. Water Res. 66, 85–98 (2014)

    Article  Google Scholar 

  3. Dürrenmatt, D.J., Gujer, W.: Data-driven modeling approaches to support wastewater treatment plant operation. Environ. Model. Softw. 30, 47–56 (2012)

    Google Scholar 

  4. Sun, W., Wang, J., Gao, S.: Soft-sensor modeling of PVC polymerizing process based on F-GMDH-type neural network algorithm. J. Sens. (2017). https://doi.org/10.1155/2017/7872030

    Article  Google Scholar 

  5. Liu, J., Wang, Y., Zhang, Y.: A novel Isomap-SVR soft sensor model and its application in rotary kiln calcination zone temperature prediction. Symmetry 12(1), 167 (2020)

    Article  Google Scholar 

  6. Jalee, E.A., Aparna, K.: Neuro-fuzzy soft sensor estimator for benzene toluene distillation column. Procedia Technol. 25, 92–99 (2016)

    Article  Google Scholar 

  7. Safari, A., Hosseini, R., Mazinani, M.: Dynamic type-2 fuzzy time warping (DT2FTW): a hybrid model for uncertain time-series prediction. Int. J. Fuzzy Logic Intell. Syst. 21(4), 338–348 (2021)

    Article  Google Scholar 

  8. Nagarajan, D., Lathamaheswari, M., Kavikumar, J., et al.: Interval type-2 fuzzy logic washing machine. Int. J. Fuzzy Logic Intell. Syst. 19(4), 223–233 (2019)

    Article  Google Scholar 

  9. Lin, Y.Y., Chang, J.Y., Pal, N.R., et al.: A mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters. IEEE Trans. Fuzzy Syst. 21(3), 492–509 (2013)

    Article  Google Scholar 

  10. Lin, C.M., Le, T.L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y.Y., Chang, J.Y., Lin, C.T.: A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans. Ind. Electron. 61(1), 447–459 (2013)

    Article  Google Scholar 

  12. Mohammadzadeh, A., Ghaemi, S.: A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing 191, 200–213 (2016)

    Article  Google Scholar 

  13. Han, H.G., Chen, Z.Y., Liu, H.X., et al.: A self-organizing interval type-2 fuzzy-neural-network for modeling nonlinear systems. Neurocomputing 290, 196–207 (2018)

    Article  Google Scholar 

  14. Han, H.G., Li, J.M., Wu, X.L., et al.: Cooperative strategy for constructing interval type-2 fuzzy neural network. Neurocomputing 365, 249–260 (2019)

    Article  Google Scholar 

  15. Han, H., Sun, C., Wu, X., et al.: Self-organizing interval type-2 fuzzy neural network using information aggregation method. IEEE Trans. Neural Netw. Learn. Syst. 34(9), 6428–6442 (2022)

    Article  Google Scholar 

  16. El-Nagar, A.M., El-Bardini, M., Khater, A.A.: Recurrent general type-2 fuzzy neural networks for nonlinear dynamic systems identification. ISA Trans. 140, 170–182 (2023)

    Article  Google Scholar 

  17. Salimi-Badr, A.: IT2CFNN: An interval type-2 correlation-aware fuzzy neural network to construct non-separable fuzzy rules with uncertain and adaptive shapes for nonlinear function approximation. Appl. Soft Comput. 115, 108258 (2022)

    Article  Google Scholar 

  18. Castro, J.R., Castillo, O., Melin, P., et al.: A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179(13), 2175–2193 (2009)

    Article  Google Scholar 

  19. Sun, C., Wu, X., Han, H.: An interval type-2 fuzzy neural network with multi-gradient learning for wastewater treatment process. In: 2023 42nd Chinese Control Conference (CCC), pp. 1223–1228. IEEE (2023)

  20. Huang, S., Chen, M.: Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA. Neurocomputing 173, 1839–1850 (2016)

    Article  Google Scholar 

  21. Umoh, U., Udoh, S., Isong, E., et al.: PSO optimized interval type-2 fuzzy design for elections Results Prediction. Int. J. Fuzzy Logic Intell. Syst. 9, 1–19 (2019)

    Google Scholar 

  22. Lin, C.J., Jeng, S.Y., Lin, H.Y., et al.: Design and verification of an interval type-2 fuzzy neural network based on improved particle swarm optimization. Appl. Sci. 10(9), 3041 (2020)

    Article  Google Scholar 

  23. Mao, W.L., Hung, C.W.: Type-2 fuzzy neural network using grey wolf optimizer learning algorithm for nonlinear system identification. Microsyst. Technol. 24(10), 4075–4088 (2018)

    Article  Google Scholar 

  24. Cho, K.B., Wang, B.H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets Syst. 83(3), 325–339 (1996)

    Article  MathSciNet  Google Scholar 

  25. Wu, S., Er, M.J.: Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans. Syst. Man Cybern. Part B 30(2), 358–364 (2000)

    Article  Google Scholar 

  26. Zhou, H., Zhang, Y., Duan, W., et al.: Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme. Appl. Soft Comput. 95, 106516 (2020)

    Article  Google Scholar 

  27. Wang, N., Er, M.J., Meng, X.: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing 72(16–18), 3818–3829 (2009)

    Article  Google Scholar 

  28. Dhahri, H., Alimi, A.M.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 2938–2943 (2006)

  29. Wang, N.: A generalized ellipsoidal basis function based online self-constructing fuzzy neural network. Neural Process. Lett. 34(1), 13–37 (2011)

    Article  Google Scholar 

  30. Kim, J., Kasabov, N.: HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Netw. 12(9), 1301–1319 (1999)

    Article  Google Scholar 

  31. Gaxiola, F., Melin, P., Valdez, F., et al.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)

    Article  Google Scholar 

  32. Almaraashi, M., John, R.: Tuning of type-2 fuzzy systems by simulated annealing to predict time series. In: Proceedings of the world Congress on Engineering, pp. 976–980 (2011)

  33. Juang, C.F., Huang, R.B., Cheng, W.Y.: An interval type-2 fuzzy-neural network with support-vector regression for noisy regression problems. IEEE Trans. Fuzzy Syst. 18(4), 686–699 (2010)

    Article  Google Scholar 

  34. Gaxiola, F., Melin, P., Valdez, F., et al.: Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction. Inf. Sci. 325, 159–174 (2015)

    Article  MathSciNet  Google Scholar 

  35. Wu, S., Er, M.J., Gao, Y.: A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans. Fuzzy Syst. 9(4), 578–594 (2001)

    Article  Google Scholar 

  36. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation, pp. 325–331 (2004)

  37. Huang, G.-B., Saratchandran, P., Sundararajan, N.: An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans. Syst. Man Cybern. Part B 34(6), 2284–2292 (2004)

    Article  Google Scholar 

Download references

Funding

This study was supported by the Research Initiation Fund Project of Liaoning Petrochemical University (Grant No. 2019XJJL-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoyan Zhao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhao, T., Cao, J. et al. Soft Sensor Modeling of Self-Organizing Interval Type-2 Fuzzy Neural Network Based on Adaptive Quantum-Behaved Particle Swarm Optimization Algorithm. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01701-7

Keywords

Navigation