Skip to main content
Log in

Role of Human Serum Albumin in the Prevention and Treatment of Alzheimer’s Disease

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Alzheimer’s disease (AD) was and remains the main cause of the development of dementia in older patients. This neurodegenerative disease is characterized by a progressive course and belongs to a group of socially significant diseases. There are several hypotheses for the development of AD: the tau hypothesis, the amyloid hypothesis, the cholinergic hypothesis, the hypotheses of oxidative stress and inflammation. The absence of a generally accepted understanding of the etiology and pathogenesis of AD prevents the development of new efficient methods for its treatment and prevention. In clinical practice, cholinesterase inhibitors that alleviate the symptoms of the disease but do not affect its course are widely used. In 2021, a drug for pathogenetic therapy of AD (aducanumab), which contributes to a decrease in the content of amyloid-β peptide (Aβ) in the brain of patients, was for the first time approved. The effect on human serum albumin (HSA), which carries 90% of Aβ in the blood serum and 40–90% of Aβ in the cerebrospinal fluid, is another promising approach to the treatment of AD aimed at removing Aβ from the patient’s central nervous system. In clinical practice, plasmapheresis with a replacement of one’s own HSA with a purified therapeutic albumin preparation has already been tested and demonstrated its efficiency. The enhancement of the interaction of HSA with Aβ through the effect of exogenous and endogenous HSA ligands (such as serotonin, ibuprofen, and some unsaturated fatty acids) is another variant of this approach. The studies in vivo confirm the association of this group of ligands with the pathogenesis of AD. The listed substances belong to well-studied natural metabolites or drugs, which significantly simplifies the development of new methods of therapy and prevention of AD using them. In general, a new direction of scientific studies devoted to the study of HSA as a carrier and depot of Aβ in the blood and cerebrospinal fluid will allow us to expand our understanding of Aβ metabolism and its role in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFRENCES

  1. Algamal, M., Milojevic, J., Jafari, N., Zhang, W., and Melacini, G., Mapping the interactions between the Alzheimer’s Aβ-peptide and human serum albumin beyond domain resolution, Biophys. J., 2013, vol. 105, no. 7, pp. 1700–1709. https://doi.org/10.1016/j.bpj.2013.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Algamal, M., Ahmed, R., Jafari, N., Ahsan, B., Ortega, J., and Melacini, G., Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid β (Aβ) peptides in the monomer and protofibril states, J. Biol. Chem., 2017, vol. 292, no. 42, pp. 17158–17168. https://doi.org/10.1074/jbc.M117.792853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ali, M.M., Ghouri, R.G., Ans, A.H., Akbar, A., and Toheed, A., Recommendations for anti-inflammatory treatments in Alzheimer’s disease: A comprehensive review of the literature, Cureus, 2019, vol. 11, no. 5, p. e4620. https://doi.org/10.7759/cureus.4620

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alonso, A.C., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K., Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc. Natl. Acad. Sci., 1994, vol. 91, no. 12, pp. 5562–5566. https://doi.org/10.1073/pnas.91.12.5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., et al., Cerebrospinal fluid beta-amyloid 1-42 in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease, Arch. Neurol., 1999, vol. 56, no. 6, pp. 673–680. https://doi.org/10.1001/archneur.56.6.673

    Article  CAS  PubMed  Google Scholar 

  6. Arvanitakis, Z., Shah, R.C., and Bennett, D.A., Diagnosis and management of dementia: Review, JAMA, 2019, vol. 322, no. 16, pp. 1589–1599. https://doi.org/10.1001/jama.2019.4782

    Article  PubMed  PubMed Central  Google Scholar 

  7. Azizi, G., Navabi, S.S., Al-Shukaili, A., Seyedzadeh, M.H., Yazdani, R., and Mirshafiey, A., The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease, Sultan Qaboos Univ. Med. J., 2015, vol. 15, no. 3, pp. e305–316. https://doi.org/10.18295/squmj.2015.15.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bagheri, S., Squitti, R., Haertlé, T., Siotto, M., and Saboury, A.A., Role of copper in the onset of Alzheimer’s disease compared to other metals, Front. Aging Neurosci., 2017, vol. 9, p. 446. https://doi.org/10.3389/fnagi.2017.00446

    Article  CAS  PubMed  Google Scholar 

  9. Bal, W., Sokołowska, M., Kurowska, E., and Faller, P., Binding of transition metal ions to albumin: sites, affinities and rates, Biochim. Biophys. Acta., 2013, vol. 1830, no. 12, pp. 5444–5455. https://doi.org/10.1016/j.bbagen.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  10. Bali, J., Gheinani, A.H., Zurbriggen, S., and Rajendran, L., Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 38, pp. 15307–15311. https://doi.org/10.1073/pnas.1201632109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baumketner, A., Bernstein, S.L., Wyttenbach, T., Bitan, G., Teplow, D.B., et al., Amyloid beta-protein monomer structure: A computational and experimental study, Protein Sci., 2006, vol. 15, no. 3, pp. 420–428. https://doi.org/10.1110/ps.051762406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.-E., Bitan, G., et al., Amyloid β-Protein: Monomer structure and early aggregation states of Aβ42 and its Pro 19 alloform, J. Am. Chem. Soc., 2005, vol. 127, no. 7, pp. 2075–2084. https://doi.org/10.1021/ja044531p

    Article  CAS  PubMed  Google Scholar 

  13. Biere, A.L., Ostaszewski, B., Stimson, E.R., Hyman, B.T., Maggio, J.E., and Selkoe, D.J., Amyloid β-Peptide is transported on lipoproteins and albumin in human plasma, J. Biol. Chem., 1996, vol. 271, no. 51, pp. 32916–32922. https://doi.org/10.1074/jbc.271.51.32916

    Article  CAS  PubMed  Google Scholar 

  14. Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., and Teplow, D.B., Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways, Proc. Natl. Acad. Sci. USA., 2003, vol. 100, no. 1, pp. 330–335. https://doi.org/10.1073/pnas.222681699

    Article  CAS  PubMed  Google Scholar 

  15. Boada, M., Ortiz, P., Anaya, F., Hernández, I., Muñoz, J., et al., Amyloid-targeted therapeutics in Alzheimer’s disease: Use of human albumin in plasma exchange as a novel approach for Abeta mobilization, Drug News Perspect., 2009, vol. 22, no. 6, pp. 325–339. https://doi.org/10.1358/dnp.2009.22.6.1395256

    Article  CAS  PubMed  Google Scholar 

  16. Boada, M., Anaya, F., Ortiz, P., Olazarán, J., Shua-Haim, J.R., et al., Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: A multicenter, randomized, controlled clinical trial, J. Alzheimer’s Dis., 2017, vol. 56, no. 1, pp. 129–143. https://doi.org/10.3233/JAD-160565

    Article  CAS  Google Scholar 

  17. Boada, M., López, O.L., Olazarán, J., Núñez, L., Pfeffer, M., et al., A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study, Alzheimer’s Dementia, 2020, vol. 16, no. 10, pp. 1412–1425. https://doi.org/10.1002/alz.12137

    Article  PubMed  Google Scholar 

  18. Bode, D.C., Stanyon, H.F., Hirani, T., Baker, M.D., Nield, J., and Viles, J.H., Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and Warfarin, J. Mol. Biol., 2018, vol. 430, no. 7, pp. 919–934. https://doi.org/10.1016/j.jmb.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  19. Bohrmann, B., Tjernberg, L., Kuner, P., Poli, S., Levet-Trafit, B., et al., Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues, J. Biol. Chem., 1999, vol. 274, no. 23, pp. 15990–15995. https://doi.org/10.1074/jbc.274.23.15990

    Article  CAS  PubMed  Google Scholar 

  20. Brier, M.R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., et al., Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease, Sci. Transl. Med., 2016, vol. 8, no. 338, p. 338ra66. https://doi.org/10.1126/scitranslmed.aaf2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brinkman, S.D. and Gershon, S., Measurement of cholinergic drug effects on memory in Alzheimer’s disease, Neurobiol. Aging, 1983, vol. 4, no. 2, pp. 139–145. https://doi.org/10.1016/0197-4580(83)90038-6

    Article  CAS  PubMed  Google Scholar 

  22. Bunin, M.A. and Wightman, R.M., Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission, J. Neurosci., 1998, vol. 18, no. 13, pp. 4854–4860. https://doi.org/10.1523/JNEUROSCI.18-13-04854.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butterfield, D.A. and Lauderback, C.M., Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress, Free Radical Biol. Med., 2002, vol. 32, no. 11, pp. 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3

    Article  CAS  Google Scholar 

  24. Butterfield, D.A., Reed, T., Newman, S.F., and Sultana, R., Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment, Free Radical Biol. Med., 2007, vol. 43, no. 5, pp. 658–677. https://doi.org/10.1016/j.freeradbiomed.2007.05.037

    Article  CAS  Google Scholar 

  25. Carrillo-Mora, P., Luna, R., and Colín-Barenque, L., Amyloid beta: Multiple mechanisms of toxicity and only some protective effects?, Oxid. Med. Cell. Longevity, 2014, vol. 2014, p. 795375. https://doi.org/10.1155/2014/795375

    Article  CAS  Google Scholar 

  26. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., and Collin, F., Oxidative stress and the amyloid beta peptide in Alzheimer’s disease, Redox Biol., 2018, vol. 14, pp. 450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  27. Choi, T.S., Lee, H.J., Han, J.Y., Lim, M.H., and Kim, H.I., Molecular insights into human serum albumin as a receptor of amyloid-β in the extracellular region, J. Am. Chem. Soc., 2017, vol. 139, no. 43, pp. 15437–15445. https://doi.org/10.1021/jacs.7b08584

    Article  CAS  PubMed  Google Scholar 

  28. Christen, Y., Oxidative stress and Alzheimer disease, Am. J. Clin. Nutr., 2000, vol. 71, no. 2, pp. 621S–629S. https://doi.org/10.1093/ajcn/71.2.621s

    Article  CAS  PubMed  Google Scholar 

  29. Cirrito, J.R., Disabato, B.M., Restivo, J.L., Verges, D.K., Goebel, W.D., et al., Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans, Proc. Natl. Acad. Sci. USA., 2011, vol. 108, no. 36, pp. 14968–14973. https://doi.org/10.1073/pnas.1107411108

    Article  PubMed  PubMed Central  Google Scholar 

  30. Costa, M., Ortiz, A.M., and Jorquera, J.I., Therapeutic albumin binding to remove amyloid-β, J. Alzheimer’s Dis., 2012, vol. 29, no. 1, pp. 159–170. https://doi.org/10.3233/JAD-2012-111139

    Article  CAS  Google Scholar 

  31. Cuberas-Borrós, G., Roca, I., Boada, M., Tárraga, L., Hernández, I., et al., Longitudinal neuroimaging analysis in mild-moderate Alzheimer’s disease patients treated with plasma exchange with 5% human albumin, J. Alzheimer’s Dis., 2018, vol. 61, no. 1, pp. 321–332. https://doi.org/10.3233/JAD-170693

    Article  CAS  Google Scholar 

  32. Cunnane, S.C., Schneider, J.A., Tangney, C., Tremblay-Mercier, J., Fortier, M., et al., Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease, J. Alzheimer’s Dis., 2012, vol. 29, no. 3, pp. 691–697. https://doi.org/10.3233/JAD-2012-110629

    Article  CAS  Google Scholar 

  33. Deane, R., Bell, R.D., Sagare, A., and Zlokovic, B.V., Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease, CNS Neurol. Disord.: Drug Targets, 2009, vol. 8, no. 1, pp. 16–30. https://doi.org/10.2174/187152709787601867

    Article  CAS  PubMed  Google Scholar 

  34. DeMattos, R.B., Bales, K.R., Parsadanian, M., O’Dell, M.A., Foss, E.M., et al., Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease, J. Neurochem., 2002, vol. 81, no. 2, pp. 229–236. https://doi.org/10.1046/j.1471-4159.2002.00889.x

    Article  CAS  PubMed  Google Scholar 

  35. Du, X., Wang, X., and Geng, M., Alzheimer’s disease hypothesis and related therapies, Transl. Neurodegener., 2018, vol. 7, no. 1, p. 2. https://doi.org/10.1186/s40035-018-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ezra, A., Rabinovich-Nikitin, I., Rabinovich-Toidman, P., and Solomon, B., Multifunctional effect of human serum albumin reduces Alzheimer’s disease related pathologies in the 3xTg mouse model, J. Alzheimer’s Dis., 2016, vol. 50, no. 1, pp. 175–188. https://doi.org/10.3233/JAD-150694

    Article  CAS  Google Scholar 

  37. Fändrich, M., On the structural definition of amyloid fibrils and other polypeptide aggregates, Cell. Mol. Life Sci., 2007, vol. 64, no. 16, pp. 2066–2078. https://doi.org/10.1007/s00018-007-7110-2

    Article  CAS  PubMed  Google Scholar 

  38. Fändrich, M., Meinhardt, J., and Grigorieff, N., Structural polymorphism of Alzheimer Aβ and other amyloid fibrils, Prion, 2009, vol. 3, no. 2, pp. 89–93. https://doi.org/10.4161/pri.3.2.8859

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., et al., The extraordinary ligand binding properties of human serum albumin, IUBMB Life, 2005, vol. 57, no. 12, pp. 787–796. https://doi.org/10.1080/15216540500404093

    Article  CAS  PubMed  Google Scholar 

  40. GBD 2019 Dementia Forecasting Collaborators, Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019, The Lancet Public Health, 2022, vol. 7, no. 2, pp. e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

  41. Gella, A. and Durany, N., Oxidative stress in Alzheimer disease, Cell Adhes. Migr., 2009, vol. 3, no. 1, pp. 88–93. https://doi.org/10.4161/cam.3.1.7402

    Article  Google Scholar 

  42. Ghersi-Egea, J.F., Gorevic, P.D., Ghiso, J., Frangione, B., and Patlak, C.S., Fenstermacher, J.D., Fate of cerebrospinal fluid-borne amyloid beta-peptide: Rapid clearance into blood and appreciable accumulation by cerebral arteries, J. Neurochem., 1996, vol. 67, no. 2, pp. 880–883. https://doi.org/10.1046/j.1471-4159.1996.67020880.x

    Article  CAS  PubMed  Google Scholar 

  43. Gibson, G.L., Allsop, D., and Austen, B.M., Induction of cellular oxidative stress by the beta-amyloid peptide involved in Alzheimer’s disease, Protein Pept. Lett., 2004, vol. 11, no. 3, pp. 257–270. https://doi.org/10.2174/0929866043407101

    Article  CAS  PubMed  Google Scholar 

  44. Goedert, M. and Spillantini, M.G., Tau gene mutations and neurodegeneration, Biochem. Soc. Symp., 2001, vol. 67, no. 67, pp. 59–71. https://doi.org/10.1042/bss0670059

    Article  CAS  Google Scholar 

  45. Gong, Y., Chang, L., Viola, K.L., Lacor, P.N., Lambert, M.P., et al., Alzheimer’s disease-affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss, Proc. Natl. Acad. Sci. USA., 2003, vol. 100, no. 18, pp. 10417–10422. https://doi.org/10.1073/pnas.1834302100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayden, K.M., Zandi, P.P., Khachaturian, A.S., Szekely, C.A., Fotuhi, M., et al., Does NSAID use modify cognitive trajectories in the elderly?: The Cache County Study, Neurology, 2007, vol. 69, no. 3, pp. 275–282. https://doi.org/10.1212/01.wnl.0000265223.25679.2a

    Article  CAS  PubMed  Google Scholar 

  47. Hirao, K. and Smith, G.S., Positron emission tomography molecular imaging in late-life depression, J. Geriatr. Psychiat. Neurol., 2014, vol. 27, no. 1, pp. 13–23. https://doi.org/10.1177/0891988713516540

    Article  Google Scholar 

  48. Ishima, Y., Mimono, A., Tuan Giam Chuang, V., Fukuda, T., Kusumoto, K., et al., Albumin domain mutants with enhanced Aβ binding capacity identified by phage display analysis for application in various peripheral Aβ elimination approaches of Alzheimer’s disease treatment, IUBMB Life, 2020, vol. 72, no. 4, pp. 641–651. https://doi.org/10.1002/iub.2203

    Article  CAS  PubMed  Google Scholar 

  49. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., et al., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, 2003, vol. 300, no. 5618, pp. 486–489. https://doi.org/10.1126/science.1079469

    Article  CAS  PubMed  Google Scholar 

  50. Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M., and Lamb, B.T., Inflammation as a central mechanism in Alzheimer’s disease, Alzheimers Dementia, Translat. Res. Clin. Interventions, 2018, vol. 4, no. 1, pp. 575–590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  Google Scholar 

  51. Kirkitadze, M.D., Condron, M.M., and Teplow, D.B., Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis, J. Mol. Biol., 2001, vol. 312, no. 5, pp. 1103–1119. https://doi.org/10.1006/jmbi.2001.4970

    Article  CAS  PubMed  Google Scholar 

  52. Kirschner, D.A., Abraham, C., and Selkoe, D.J., X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation, Proc. Natl. Acad. Sci. USA., 1986, vol. 83, no. 2, pp. 503–507. https://doi.org/10.1073/pnas.83.2.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kragh-Hansen, U., Structure and ligand binding properties of human serum albumin, Dan. Med. Bull., 1990, vol. 37, no. 1, pp. 57–84. http://www.ncbi.nlm.nih. gov/pubmed/2155760.

    CAS  PubMed  Google Scholar 

  54. Kumar, A., Sidhu, J., Goyal, A., and Tsao, J.W., Alzheimer Disease, Treasure Island (FL): StatPearls Publishing, 2022. http://www.ncbi.nlm.nih.gov/pubmed/2976-3097.

  55. Kuo, Y.M., Kokjohn, T.A., Kalback, W., Luehrs, D., Galasko, D.R., et al., Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma, Biochem. Biophys. Res. Commun., 2000, vol. 268, no. 3, pp. 750–756. https://doi.org/10.1006/bbrc.2000.2222

    Article  CAS  PubMed  Google Scholar 

  56. Laitinen, M.H., Ngandu, T., Rovio, S., Helkala, E.-L., Uusitalo, U., et al., Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study, Dementia Geriatr. Cognit. Disord., 2006, vol. 22, no. 1, pp. 99–107. https://doi.org/10.1159/000093478

    Article  CAS  Google Scholar 

  57. Lim, G.P., Yang, F., Chu, T., Chen, P., Beech, W., et al., Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease, J. Neurosci., 2000, vol. 20, no. 15, pp. 5709–5714. https://doi.org/10.1523/JNEUROSCI.20-15-05709.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Litus, E.A., Kazakov, A.S., Sokolov, A.S., Nemashkalova, E.L., Galushko, E.I., et al., The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids, Biochem. Biophys. Res. Commun., 2019, vol. 510, no. 2, pp. 248–253. https://doi.org/10.1016/j.bbrc.2019.01.081

    Article  CAS  PubMed  Google Scholar 

  59. Litus, E.A., Kazakov, A., Deryusheva, E., Nemashkalova, E., Shevelyova, M., et al., Serotonin promotes serum albumin interaction with the monomeric amyloid-β peptide, Int. J. Mol. Sci., 2021, vol. 22, no. 11, p. 5896. https://doi.org/10.3390/ijms22115896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Litus, E.A., Kazakov, A.S., Deryusheva, E.I., Nemashkalova, E.L., Shevelyova, M.P., et al., Ibuprofen favors binding of amyloid-β peptide to its depot, serum albumin, Int. J. Mol. Sci., 2022, vol. 23, no. 11, p. 6168. https://doi.org/10.3390/ijms23116168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Llewellyn, D., Langa, K., Friedland, R., and Lang, I., Serum albumin concentration and cognitive impairment, Curr. Alzheimer Res., 2010, vol. 7, no. 1, pp. 91–96. https://doi.org/10.2174/156720510790274392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loeffler, D.A., AMBAR, an encouraging Alzheimer’s trial that raises questions, Front. Neurol., 2020, vol. 11, p. 459. https://doi.org/10.3389/fneur.2020.00459

    Article  PubMed  PubMed Central  Google Scholar 

  63. Matsuoka, Y., Saito, M., LaFrancois, J., Saito, M., Gaynor, K., et al., Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid, J. Neurosci., 2003, vol. 23, no. 1, pp. 29–33. https://doi.org/10.1523/JNEUROSCI.23-01-00029.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCormick, J.W., Ammerman, L., Chen, G., Vogel, P.D., and Wise, J.G., Transport of Alzheimer’s associated amyloid-β catalyzed by P-glycoprotein, PLoS One, 2021, vol. 16, no. 4, p. e0250371. https://doi.org/10.1371/journal.pone.0250371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKee, A.C., Carreras, I., Hossain, L., Ryu, H., Klein, W.L., et al., Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice, Brain Res., 2008, vol. 1207, pp. 225–236. https://doi.org/10.1016/j.brainres.2008.01.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menendez-Gonzalez, M. and Gasparovic, C., Albumin exchange in Alzheimer’s disease: Might CSF be an alternative route to plasma?, Front. Neurol., 2019, vol. 10, p. 1036. https://doi.org/10.3389/fneur.2019.01036

    Article  PubMed  PubMed Central  Google Scholar 

  67. Meraz-Ríos, M.A., Toral-Rios, D., Franco-Bocanegra, D., Villeda-Hernández, J., and Campos-Peña, V., Inflammatory process in Alzheimer’s Disease, Front. Integr. Neurosci., 2013, vol. 7, p. 59. https://doi.org/10.3389/fnint.2013.00059

    Article  PubMed  PubMed Central  Google Scholar 

  68. Metaxas, A. and Kempf, S.J., Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics, Neural Regener. Res., 2016, vol. 11, no. 10, pp. 1579–1581. https://doi.org/10.4103/1673-5374.193234

    Article  CAS  Google Scholar 

  69. Miguel-Álvarez, M., Santos-Lozano, A., Sanchis-Gomar, F., Fiuza-Luces, C., Pareja-Galeano, H., et al., Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect, Drugs Aging, 2015, vol. 32, no. 2, pp. 139–147. https://doi.org/10.1007/s40266-015-0239-z

    Article  CAS  PubMed  Google Scholar 

  70. Milojevic, J. and Melacini, G., Stoichiometry and affinity of the human serum albumin-Alzheimer’s Aβ peptide interactions, Biophys. J., 2011, vol. 100, no. 1, pp. 183–192. https://doi.org/10.1016/j.bpj.2010.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Milojevic, J., Esposito, V., Das, R., and Melacini, G., Understanding the molecular basis for the inhibition of the Alzheimer’s Abeta-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy, J. Am. Chem. Soc., 2007, vol. 129, no. 14, pp. 4282–4290. https://doi.org/10.1021/ja067367+

    Article  CAS  PubMed  Google Scholar 

  72. Milojevic, J., Raditsis, A., and Melacini, G., Human serum albumin inhibits Abeta fibrillization through a “monomer-competitor” mechanism, Biophys. J., 2009, vol. 97, no. 9, pp. 2585–2594. https://doi.org/10.1016/j.bpj.2009.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moreira, P.I., Carvalho, C., Zhu, X., Smith, M.A., and Perry, G., Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology, Biochim. Biophys. Acta., 2010, vol. 1802, no. 1, pp. 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  74. Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., et al., Dietary fats and the risk of incident Alzheimer disease, Arch. Neurol., 2003, vol. 60, no. 2, pp. 194–200. https://doi.org/10.1001/archneur.60.2.194

    Article  PubMed  Google Scholar 

  75. Mullard, A., Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating, Nat. Rev. Drug Discovery, 2021, vol. 20, no. 1, pp. 3–5. https://doi.org/10.1038/d41573-020-00217-7

    Article  CAS  PubMed  Google Scholar 

  76. Murphy, M.P. and LeVine, H., Alzheimer’s disease and the amyloid-β peptide, J. Alzheimer’s Dis., 2010, vol. 19, no. 1, pp. 311–323. https://doi.org/10.3233/JAD-2010-1221

    Article  CAS  Google Scholar 

  77. Pitschke, M., Prior, R., Haupt, M., and Riesner, D., Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy, Nat. Med., 1998, vol. 4, no. 7, pp. 832–834. https://doi.org/10.1038/nm0798-832

    Article  CAS  PubMed  Google Scholar 

  78. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., et al., Oxidative stress: Harms and benefits for human health, Oxid. Med. Cell. Longevity, 2017, vol. 2017, pp. 1–13. https://doi.org/10.1155/2017/8416763

    Article  CAS  Google Scholar 

  79. Poduslo, J.F., Curran, G.L., Sanyal, B., and Selkoe, D.J., Receptor-mediated transport of human amyloid beta-protein 1-40 and 1-42 at the blood-brain barrier, Neurobiol. Dis., 1999, vol. 6, no. 3, pp. 190–199. https://doi.org/10.1006/nbdi.1999.0238

    Article  CAS  PubMed  Google Scholar 

  80. Poorkaj, P., Grossman, M., Steinbart, E., Payami, H., Sadovnick, A., et al., Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia, Arch. Neurol., 2001, vol. 58, no. 3, pp. 383–387. https://doi.org/10.1001/archneur.58.3.383

    Article  CAS  PubMed  Google Scholar 

  81. Qiang, W., Yau, W.-M., Luo, Y., Mattson, M.P., and Tycko, R., Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils, Proc. Natl. Acad. Sci., 2012, vol. 109, no. 12, pp. 4443–4448. https://doi.org/10.1073/pnas.1111305109

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ramos-Fernández, E., Tajes, M., Palomer, E., Ill-Raga, G., Bosch-Morató, M., et al., Posttranslational nitro-glycative modifications of albumin in Alzheimer’s disease: Implications in cytotoxicity and amyloid-β peptide aggregation, J. Alzheimer’s Dis., 2014, vol. 40, no. 3, pp. 643–657. https://doi.org/10.3233/JAD-130914

    Article  CAS  Google Scholar 

  83. Rayner, H.C. and Hasking, D.J., Hyperparathyroidism associated with severe hypercalcaemia and myocardial calcification despite minimal bone disease, BMJ, 1986, vol. 293, no. 6557, pp. 1277–1278. https://doi.org/10.1136/bmj.293.6557.1277-a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reyes Barcelo, A.A., Gonzalez-Velasquez, F.J., and Moss, M.A., Soluble aggregates of the amyloid-beta peptide are trapped by serum albumin to enhance amyloid-beta activation of endothelial cells, J. Biol. Eng., 2009, vol. 3, no. 1, p. 5. https://doi.org/10.1186/1754-1611-3-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rivers-Auty, J., Mather, A.E., Peters, R., Lawrence, C.B., and Brough, D., Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate?, Brain Commun., 2020, vol. 2, no. 2, p. fcaa109. https://doi.org/10.1093/braincomms/fcaa109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roberts, K.F., Elbert, D.L., Kasten, T.P., Patterson, B.W., Sigurdson, W.C., et al., Amyloid-β efflux from the central nervous system into the plasma, Ann. Neurol., 2014, vol. 76, no. 6, pp. 837–844. https://doi.org/10.1002/ana.24270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rodríguez-Martín, T., Cuchillo-Ibáñez, I., Noble, W., Nyenya, F., Anderton, B.H., and Hanger, D.P., Tau phosphorylation affects its axonal transport and degradation, Neurobiol. Aging, 2013, vol. 34, no. 9, pp. 2146–2157. https://doi.org/10.1016/j.neurobiolaging.2013.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rózga, M., Kłoniecki, M., Jabłonowska, A., Dadlez, M., and Bal, W., The binding constant for amyloid Aβ40 peptide interaction with human serum albumin, Biochem. Biophys. Res. Commun., 2007, vol. 364, no. 3, pp. 714–718. https://doi.org/10.1016/j.bbrc.2007.10.080

    Article  CAS  PubMed  Google Scholar 

  89. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M., and Mahmoudi, J., Amyloid-Beta: A crucial factor in Alzheimer’s disease, Medical Principles and Practice, 2015, vol. 24, no. 1, pp. 1–10. https://doi.org/10.1159/000369101

    Article  PubMed  Google Scholar 

  90. Schilde, L.M., Kösters, S., Steinbach, S., Schork, K., Eisenacher, M., et al., Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research, PLoS One, 2018, vol. 13, no. 11, p. e0206478. https://doi.org/10.1371/journal.pone.0206478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sevigny, J., Chiao, P., Bussière, T., Weinreb, P.H., Williams, L., et al., The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease, Nature, 2016, vol. 537, no. 7618, pp. 50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  92. Shankar, G.M. and Walsh, D.M., Alzheimer’s disease: Synaptic dysfunction and Abeta, Mol. Neurodegener., 2009, vol. 4, no. 1, p. 48. https://doi.org/10.1186/1750-1326-4-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sharma, K., Cholinesterase inhibitors as Alzheimer’s therapeutics (Review), Mol. Med. Rep., 2019, vol. 20, no. 2, pp. 1479–1487. https://doi.org/10.3892/mmr.2019.10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sheppard, O. and Coleman, M., Alzheimer’s disease: Etiology, neuropathology and pathogenesis, in Alzheimer’s Disease: Drug Discovery, Brisbane: Exon Publications, 2020. https://doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch1

  95. Shibata, M., Yamada, S., Kumar, S.R., Calero, M., Ba-ding, J., et al., Clearance of Alzheimer’s amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier, J. Clin. Invest., 2000, vol. 106, no. 12, pp. 1489–1499. https://doi.org/10.1172/JCI10498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sjogren, M., Both total and phosphorylated tau are increased in Alzheimer’s disease, J. Neurol., Neurosurg. Psychiatry, 2001, vol. 70, no. 5, pp. 624–630. https://doi.org/10.1136/jnnp.70.5.624

    Article  CAS  PubMed  Google Scholar 

  97. Spires-Jones, T.L. and Hyman, B.T., The intersection of amyloid beta and tau at synapses in Alzheimer’s disease, Neuron, 2014, vol. 82, no. 4, pp. 756–771. https://doi.org/10.1016/j.neuron.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stanyon, H.F. and Viles, J.H., Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: Implications for Alzheimer disease, J. Biol. Chem., 2012, vol. 287, no. 33, pp. 28163–28168. https://doi.org/10.1074/jbc.C112.360800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Summers, W.K., Viesselman, J.O., Marsh, G.M., and Candelora, K., Use of THA in treatment of Alzheimer-like dementia: Pilot study in twelve patients, Biol. Psychiatry, 1981, vol. 16, no. 2, pp. 145–153. http://www.ncbi.nlm.nih.gov/pubmed/7225483.

    CAS  PubMed  Google Scholar 

  100. Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K., and Kling, A., Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, N. Engl. J. Med., 1986, vol. 315, no. 20, pp. 1241–1245. https://doi.org/10.1056/NEJM198611133152001

    Article  CAS  PubMed  Google Scholar 

  101. Suvorina, M.Y., Selivanova, O.M., Grigorashvili, E.I., Nikulin, A.D., Marchenkov, V.V., et al., Studies of polymorphism of amyloid-β42 peptide from different suppliers, J. Alzheimer’s Dis., 2015, vol. 47, no. 3, pp. 583–593. https://doi.org/10.3233/JAD-150147

    Article  CAS  Google Scholar 

  102. Tampi, R.R., Forester, B.P., and Agronin, M., Aducanumab: Evidence from clinical trial data and controversies, Drugs Context, 2021, vol. 10, pp. 1–9. https://doi.org/10.7573/dic.2021-7-3

    Article  Google Scholar 

  103. Tiraboschi, P., Sabbagh, M.N., Hansen, L.A., Salmon, D.P., Merdes, A., et al., Alzheimer disease without neocortical neurofibrillary tangles, Neurology, 2004, vol. 62, no. 7, pp. 1141–1147. https://doi.org/10.1212/01.WNL.0000118212.41542.E7

    Article  CAS  PubMed  Google Scholar 

  104. Tschanz, J.T., Norton, M.C., Zandi, P.P., and Lyketsos, C.G., The Cache County Study on Memory in Aging: Factors affecting risk of Alzheimer’s disease and its progression after onset, Int. Rev. Psychiat., 2013, vol. 25, no. 6, pp. 673–685. https://doi.org/10.3109/09540261.2013.849663

    Article  Google Scholar 

  105. Vandesquille, M., Po, C., Santin, M., Herbert, K., Comoy, E., and Dhenain, M., Amyloid plaques detection by MRI: Comparison of five mouse models of amyloidosis, Alzheimer’s Dementia, 2014, vol. 10, p. 15. https://doi.org/10.1016/j.jalz.2014.05.020

    Article  Google Scholar 

  106. Vlad, S.C., Miller, D.R., Kowall, N.W., and Felson, D.T., Protective effects of NSAIDs on the development of Alzheimer disease, Neurology, 2008, vol. 70, no. 19, pp. 1672–1677. https://doi.org/10.1212/01.wnl.0000311269.57716.63

    Article  CAS  PubMed  Google Scholar 

  107. Van der Vusse, G.J., Albumin as fatty acid transporter, Drug Metab. Pharmacokinet., 2009, vol. 24, no. 4, pp. 300–307. https://doi.org/10.2133/dmpk.24.300

    Article  CAS  PubMed  Google Scholar 

  108. Wang, C., Cheng, F., Xu, L., and Jia, L., HSA targets multiple Aβ42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Aβ42 aggregates, RSC Adv., 2016, vol. 6, no. 75, pp. 71165–71175. https://doi.org/10.1039/C6RA14590F

    Article  CAS  Google Scholar 

  109. Wang, D.-S., Dickson, D.W., and Malter, J.S., β-Amyloid degradation and Alzheimer’s disease, J. Biomed. Biotechnol., 2006, vol. 2006, no. 3, p. 58406. https://doi.org/10.1155/JBB/2006/58406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, J., Tan, L., Wang, H.-F., Tan, C.-C., Meng, X.-F., et al., Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis, J. Alzheimer’s Dis., 2015, vol. 44, no. 2, pp. 385–396. https://doi.org/10.3233/JAD-141506

    Article  CAS  Google Scholar 

  111. Wang, W., Dong, X., and Sun, Y., Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis, Bioconjugate Chem., 2019, vol. 30, no. 5, pp. 1477–1488. https://doi.org/10.1021/acs.bioconjchem.9b00209

    Article  CAS  Google Scholar 

  112. Whiley, L., Chappell, K.E., D’Hondt, E., Lewis, M.R., Jiménez, B., et al., Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease, Alzheimer’s Res. Ther., 2021, vol. 13, no. 1, p. 20. https://doi.org/10.1186/s13195-020-00741-z

    Article  CAS  Google Scholar 

  113. Xie, B., Li, X., Dong, X.-Y., and Sun, Y., Insight into the inhibition effect of acidulated serum albumin on amyloid β-protein fibrillogenesis and cytotoxicity, Langmuir, 2014, vol. 30, no. 32, pp. 9789–9796. https://doi.org/10.1021/la5025197

    Article  CAS  PubMed  Google Scholar 

  114. Xie, H. and Guo, C., Albumin alters the conformational ensemble of amyloid-β by promiscuous interactions: Implications for amyloid inhibition, Front. Mol. Biosci., 2020, vol. 7, p. 629520. https://doi.org/10.3389/fmolb.2020.629520

    Article  CAS  PubMed  Google Scholar 

  115. Yan, Q., Zhang, J., Liu, H., Babu-Khan, S., Vassar, R., et al., Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease, J. Neurosci., 2003, vol. 23, no. 20, pp. 7504–7509. https://doi.org/10.1523/JNEUROSCI.23-20-07504.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, H., Liu, D., Huang, H., Zhao, Y., and Zhou, H., Characteristics of insulin-degrading enzyme in Alzheimer’s disease: A meta-analysis, Curr. Alzheimer Res., 2018, vol. 15, no. 7, pp. 610–617. https://doi.org/10.2174/1567205015666180119105446

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, S., Iwata, K., Lachenmann, M.J., Peng, J.W., Li, S., et al., The Alzheimer’s peptide Aβ adopts a collapsed coil structure in water, J. Struct. Biol., 2000, vol. 130, nos. 2–3, pp. 130–141. https://doi.org/10.1006/jsbi.2000.4288

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, W., Xiong, H., Callaghan, D., Liu, H., Jones, A., et al., Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging, Fluids Barriers CNS, 2013, vol. 10, no. 1, p. 13. https://doi.org/10.1186/2045-8118-10-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, M. and Guo, C., Multipronged regulatory functions of serum albumin in early stages of amyloid-β aggregation, ACS Chem. Neurosci., 2021, vol. 12, no. 13, pp. 2409–2420. https://doi.org/10.1021/acschemneuro.1c00150

    Article  CAS  PubMed  Google Scholar 

  120. Zhao, Y. and Marcel, Y.L., Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins, Biochemistry, 1996, vol. 35, no. 22, pp. 7174–7180. https://doi.org/10.1021/bi952242v

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 20-74-10072) (E.A. Litus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Litus.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Barkhash

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevelyova, M.P., Deryusheva, E.I., Nemashkalova, E.L. et al. Role of Human Serum Albumin in the Prevention and Treatment of Alzheimer’s Disease. Biol Bull Rev 14, 29–42 (2024). https://doi.org/10.1134/S2079086424010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086424010109

Navigation