Skip to main content
Log in

Dephasing effects on nonclassical correlations in two-qubit Heisenberg spin chain model with anisotropic spin–orbit interactions

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The advancement of quantum information hinges on the scalability of quantum systems to maintain non-local characteristics and improve the efficiency of quantum protocols. Strategies to enhance nonclassical correlations within quantum systems while mitigating decoherence phenomena are searing topics nowadays. Our study delves into the dynamics of nonclassical correlations within a two-qubit Heisenberg spin XXX model, utilizing Milburn’s dynamical master equation. We consider the impacts of anisotropic spin–orbit interactions, such as the Dzyaloshinskii–Moriya (DM) interaction and Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEWA) interaction, and employ three metrics, namely Bell’s inequality violation, concurrence, and local quantum uncertainty, to examine the dynamical features of nonclassical correlations under intrinsic decoherence. Our findings showcase the significance of the initial state of the two-qubit system in determining the parameters of spin–orbit interactions that influence the nonclassicality of the system. This underscores the critical role that DM and KSEWA interactions play in nonclassical correlations in solid-state quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are included in this article.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010)

    Google Scholar 

  2. M.M. Wilde, Quantum Information Theory (Cambridge University Press, 2013)

    Book  Google Scholar 

  3. J.S. Bell, On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  4. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  5. E.R. Loubenets, Bell’s nonlocality in a general nonsignaling case: quantitatively and conceptually. Found. Phys. 47(8), 1100–1114 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. N. Habiballah, A. Salah, L. Jebli, M. Amazioug, J. El Qars, M. Nassik, Quantum entanglement and violation of Bell’s inequality in dipolar interaction system under Dzyaloshinsky–Moriya interaction. Mod. Phys. Lett. A 35(17), 2050138 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Ait Chlih, N. Habiballah, D. Khatib, The relationship between the degree of violation of Bell-CHSH inequality and measurement uncertainty in two classes of spin squeezing mechanisms. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979224503107

    Article  Google Scholar 

  8. S.L. Braunstein, A. Mann, M. Revzen, Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett. 68, 3259–3261 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. R.F. Werner, M.M. Wolf, All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  ADS  Google Scholar 

  10. C. Monroe, Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002)

    Article  ADS  Google Scholar 

  11. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  ADS  Google Scholar 

  12. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  13. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Daoud, R. Ahl Laamara, Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states. Phys. Lett. A 376(35), 2361–2371 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  16. B. Aaronson, R.L. Franco, G. Compagno, G. Adesso, Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  17. L. Jebli, B. Benzimoun, M. Daoud, Quantum correlations for two-qubit X states through the local quantum uncertainty. Int. J. Quantum Inf. 15(03), 1750020 (2017)

    Article  MathSciNet  Google Scholar 

  18. Y. Khedif, M. Daoud, Thermal quantum correlations in the two-qubit Heisenberg XYZ spin chain with Dzyaloshinskii–Moriya interaction. Mod. Phys. Lett. A 36(11), 2150074 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Ait Chlih, A. Rahman, N. Habiballah, Prospecting quantum correlations and examining teleportation fidelity in a pair of coupled double quantum dots system. Ann. Phys. (2023). https://doi.org/10.1002/andp.202300434

    Article  Google Scholar 

  20. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  21. M.G.A. Paris, Quantum estimation for quantum technology. Int. J. Quantum Inf. 07(supp01), 125–137 (2009)

    Article  Google Scholar 

  22. A. Slaoui, M. Daoud, R.A. Laamara, The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17(7), 178 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Slaoui, L. Bakmou, M. Daoud, R. Ahl Laamara, A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 383(19), 2241–2247 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. D.C. Mattis, The Theory of Magnetism Made Simple (World Scientific Publishing Company, 2006)

    Book  Google Scholar 

  25. W. Nolting, A. Ramakanth, Exchange Interaction (Springer, Berlin, Heidelberg, 2009), pp.175–231

    Google Scholar 

  26. A. Ait Chlih, N. Habiballah, M. Nassik, Dynamics of quantum correlations under intrinsic decoherence in a Heisenberg spin chain model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 20(3), 92 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Habiballah, Y. Khedif, M. Daoud, Local quantum uncertainty in XY Z Heisenberg spin models with Dzyaloshinski–Moriya interaction. Eur. Phys. J. D 72(9), 154 (2018)

    Article  ADS  Google Scholar 

  28. A. Ait Chlih, N. Habiballah, M. Nassik, exploring the effects of intrinsic decoherence on quantum-memory-assisted entropic uncertainty relation in a Heisenberg spin chain model. Int. J. Theor. Phys. 61(2), 49 (2022)

    Article  MathSciNet  Google Scholar 

  29. A. Ait Chlih, N. Habiballah, M. Nassik, D. Khatib, Entanglement teleportation in anisotropic Heisenberg XY spin model with Herring–Flicker coupling. Mod. Phys. Lett. A 37(06), 2250038 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y.P. Kandel, H. Qiao, S. Fallahi, G.C. Gardner, M.J. Manfra, J.M. Nichol, Coherent spin-state transfer via Heisenberg exchange. Nature 573(7775), 553–557 (2019)

    Article  ADS  Google Scholar 

  31. S. Elghaayda, Z. Dahbi, M. Mansour, Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quantum Electron. 54(7), 419 (2022)

    Article  Google Scholar 

  32. A. Sbiri, M. Oumennana, M. Mansour, Thermal quantum correlations in a two-qubit Heisenberg model under Calogero–Moser and Dzyaloshinsky–Moriya interactions. Mod. Phys. Lett. B 36(09), 2150618 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  33. T.A.S. Ibrahim, M.E. Amin, A. Salah, On the dynamics of correlations in 2 \(\otimes\) 3 Heisenberg chains with inhomogeneous magnetic field. Int. J. Theor. Phys. 62(1), 14 (2023)

    Article  MathSciNet  Google Scholar 

  34. N.H. Abdel-Wahab, T.A.S. Ibrahim, M.E. Amin, A. Salah, Influence of intrinsic decoherence on quantum metrology of two atomic systems in the presence of dipole–dipole interaction. Opt. Quantum Electron. 56(1), 105 (2023)

    Article  Google Scholar 

  35. Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, A. Wallraff, Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X 5, 021027 (2015)

    Google Scholar 

  36. I. Buluta, S. Ashhab, F. Nori, Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  37. C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, T. Byrnes, Quantum coherence of the Heisenberg spin models with Dzyaloshinsky–Moriya interactions. Sci. Rep. 7(1), 13865 (2017)

    Article  ADS  Google Scholar 

  38. I. Dzyaloshinsky, A thermodynamic theory of “weak" ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  39. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  40. T. Moriya, New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  41. T.A. Kaplan, Single-band Hubbard model with spin-orbit coupling. Zeitschrift für Phys. B Condens. Matter 49(4), 313–317 (1983)

    Article  ADS  Google Scholar 

  42. L. Shekhtman, O. Entin-Wohlman, A. Aharony, Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836–839 (1992)

    Article  ADS  Google Scholar 

  43. L. Shekhtman, A. Aharony, O. Entin-Wohlman, Bond-dependent symmetric and antisymmetric superexchange interactions in La\({}_{2}\)CuO\({}_{4}\). Phys. Rev. B 47, 174–182 (1993)

    Article  ADS  Google Scholar 

  44. A. Zheludev, S. Maslov, I. Tsukada, I. Zaliznyak, L.P. Regnault, T. Masuda, K. Uchinokura, R. Erwin, G. Shirane, Experimental evidence for Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions in \({\rm Ba} _{2}{\rm CuGe}_{2}{O}_{7}\). Phys. Rev. Lett. 81, 5410–5413 (1998)

    Article  ADS  Google Scholar 

  45. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48(9–11), 771–783 (2000)

    Article  Google Scholar 

  46. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  47. M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169–1174 (2013)

    Article  ADS  Google Scholar 

  48. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  49. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989)

    Article  ADS  Google Scholar 

  50. Y.-L. Wu, D.-L. Deng, X. Li, S. Das Sarma, Intrinsic decoherence in isolated quantum systems. Phys. Rev. B 95, 014202 (2017)

    Article  ADS  Google Scholar 

  51. G.J. Milburn, Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  52. N. Hussein, D. Eisa, T. Ibrahim, Thermodynamics variables of the btz black hole with a minimal length and its efficiency, arXiv preprint arXiv:1804.02287, (2018)

  53. N. Hussein, D. Eisa, T. Ibrahim, The free energy for rotating and charged black holes and banados, teitelboim and zanelli black holes. Zeitschrift für Naturforschung A 73(11), 1061–1073 (2018)

    Article  ADS  Google Scholar 

  54. A.E. Aroui, Y. Khedif, N. Habiballah, M. Nassik, Characterizing the thermal quantum correlations in a two-qubit Heisenberg XXZ spin-1/2 chain under Dzyaloshinskii–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. Opt. Quantum Electron. 54(11), 694 (2022)

    Article  Google Scholar 

  55. A.-B.A. Mohamed, A. Rahman, F.M. Aldosari, H. Eleuch, Dynamics of quantum-memory assisted entropic uncertainty of a two-spin Heisenberg XXX model under the intrinsic decoherence effect. Phys. Scr. 98, 065110 (2023)

    Article  ADS  Google Scholar 

  56. A.-B.A. Mohamed, A. Rahman, F.M. Aldosari, Thermal quantum memory, Bell-non-locality, and entanglement behaviors in a two-spin Heisenberg chain model. Alex. Eng. J. 66, 861–871 (2023)

    Article  Google Scholar 

  57. H. Moya-Cessa, V. Bužek, M.S. Kim, P.L. Knight, Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900–3905 (1993)

    Article  ADS  Google Scholar 

  58. J.-B. Xu, X.-B. Zou, Dynamic algebraic approach to the system of a three-level atom in the \(\Lambda\) configuration. Phys. Rev. A 60, 4743–4752 (1999)

    Article  ADS  Google Scholar 

  59. A.-S.F. Obada, H.A. Hessian, Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model. J. Opt. Soc. Am. B 21, 1535–1542 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  60. R. Horodecki, P. Horodecki, M. Horodecki, Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  61. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  62. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  63. E.P. Wigner, M.M. Yanase, Information Contents Of Distributions (Springer, Berlin, Heidelberg, 1997), pp.452–460

    Google Scholar 

  64. S. Luo, Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  65. L. Jebli, M. Amzioug, S.E. Ennadifi, N. Habiballah, M. Nassik, Effect of weak measurement on quantum correlations. Chin. Phys. B 29(11), 110301 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tamer A Seoudy has put forward the primary idea and performed all calculations. Anas Ait contributed to the development and completion of the idea, analyzing the results, discussions . They write the manuscript together. Thorough checking of the manuscript was done by Tamer and Anas.

Corresponding author

Correspondence to Tamer A. Seoudy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: Bell non-locality

Consider a two-qubit X-shape density matrix:

$$\begin{aligned} \hat{X}^{AB}=\left( \begin{array}{cccc} \rho _{11} &{} 0 &{} 0 &{} \rho _{14} \\ 0 &{} \rho _{22} &{} \rho _{23} &{} 0 \\ 0 &{} \rho _{23}^* &{} \rho _{33} &{} 0 \\ \rho _{14}^* &{} 0 &{} 0 &{} \rho _{44} \\ \end{array} \right) , \end{aligned}$$
(21)

where the elements \(\rho _{ij} \ge 0 (i,j=1,2,3,4)\) fulfill the unit trace (i.e., \(\sum _{i=1}^4 \rho _{ii}=1\)) and positivity conditions (\(\rho _{22}\rho _{33} \ge \vert \rho _{23}\vert ^2\) and \(\rho _{11}\rho _{44} \ge \vert \rho _{14}\vert ^2\)). The nonzero elements \(a_{ij}\) of the correlation matrix A (Eq. (14)) are given by:

$$\begin{aligned} \begin{aligned}&{a}_{11}=2\mathcal {R}(\varrho _{14}+\varrho _{23}),\\&{a}_{12}=-\mathcal {J}(\varrho _{14}-\varrho _{23}),\\&{a}_{21}=-\mathcal {J}(\varrho _{14}+\varrho _{23}),\\&{a}_{22}=-\mathcal {R}(\varrho _{14}-\varrho _{23}),\\&{a}_{33}=\varrho _{11}-\varrho _{22}-\varrho _{33}+\varrho _{44}. \end{aligned} \end{aligned}$$
(22)

where \(\mathcal {R}(\Omega )\) and \(\mathcal {J}(\Omega )\) denote, respectively, the real and imaginary parts of a given complex number \(\Omega\). So, by making use of the above nonzero elements \(a_{ij}\), we straightforwardly obtain the eigenvalues of the matrix \(\mathcal {A}\) as:

$$\begin{aligned} \begin{aligned}&{\xi }_1=\left( \varrho _{11}-\varrho _{22}-\varrho _{33}+\varrho _{44}\right) {}^2,\\&{\xi }_2=4 \left( |\varrho _{23}|+|\varrho _{14}|\right) {}^2,\\&{\xi }_3=4 \left( |\varrho _{23}|-|\varrho _{14}|\right) {}^2. \end{aligned} \end{aligned}$$
(23)

So, the explicit formula of Bell non-locality is:

$$\begin{aligned} BL=2\sqrt{4 \left( |\varrho _{23}|+|\varrho _{14}|\right) {}^2+\max \left[ 4 \left( |\varrho _{23}|-|\varrho _{14}|\right) {}^2,\left( \varrho _{11}-\varrho _{22}-\varrho _{33}+\varrho _{44}\right) {}^2\right] }-1. \end{aligned}$$
(24)

1.2 Appendix B: Concurrence

The analytical expression of the concurrence for a two-qubit X-shape state (21) is obtained by making use of the following matrix:

$$\begin{aligned} \begin{aligned} M=&\hat{{X}}^{AB} (\hat{\sigma }_y^A\otimes \hat{\sigma }_y^B) \hat{ {X}}^{*AB} (\hat{\sigma }_y^A\otimes \hat{\sigma }_y^B)\\ =&\left( \begin{array}{cccc} |\varrho _{14}|^2+\varrho _{11} \varrho _{44} &{} 0 &{} 0 &{} 2 \varrho _{11} \varrho _{14} \\ 0 &{} |\varrho _{23}|^2+\varrho _{22} \varrho _{33} &{} 2 \varrho _{22} \varrho _{23} &{} 0 \\ 0 &{} 2 \varrho _{33} \varrho _{23}^* &{} |\varrho _{23}|^2+\varrho _{22} \varrho _{33} &{} 0 \\ 2 \varrho _{44} \varrho _{14}^*&{} 0 &{} 0 &{} |\varrho _{14}|^2+\varrho _{11} \varrho _{44} \\ \end{array} \right) . \end{aligned} \end{aligned}$$
(25)

Hence, the expression of the concurrence is given as:

$$\begin{aligned} C=2 \max [0,|\varrho _{23}|-\sqrt{\varrho _{11}\varrho _{44}},|\varrho _{14}|-\sqrt{\varrho _{22}\varrho _{33}}]. \end{aligned}$$
(26)

1.3 Appendix C: Local quantum uncertainty

The square root of a given two-qubit X-shape density matrix (Eq. (21)) is given by:

$$\begin{aligned} \sqrt{\hat{X}^{AB}}=\left( \begin{array}{cccc} b_{11} &{} 0 &{} 0 &{} b_{14} \\ 0 &{} b_{22} &{} b _{23} &{} 0 \\ 0 &{} b_{32} &{} b_{33} &{} 0 \\ b_{41} &{} 0 &{} 0 &{} b_{44} \\ \end{array} \right) , \end{aligned}$$
(27)

where

$$\begin{aligned} \begin{aligned}&b_{11}=\\&\frac{1}{2\sqrt{2} \sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\\&\quad \bigg [\left( \varrho _{11}-\varrho _{44}+\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}\right) \sqrt{\varrho _{11}+\varrho _{44}+\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\\&- \left( \varrho _{11}-\varrho _{44}-\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}\right) \sqrt{\varrho _{11}+\varrho _{44}-\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\bigg ]\\&b_{14}=b_{41}^{*}=\frac{\varrho _{14} \left( \sqrt{\varrho _{11}+\varrho _{44}+\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4|\varrho _{14}|^2}}-\sqrt{\varrho _{11}+\varrho _{44}-\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\right) }{\sqrt{2} \sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\\&b_{22}=\\&\frac{1}{2 \sqrt{2} \sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\\&\quad \bigg [\left( \varrho _{22}-\varrho _{33}+\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}\right) \sqrt{\varrho _{22}+\varrho _{33}+\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\\&-\left( \varrho _{22}-\varrho _{33}-\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}\right) \sqrt{\varrho _{22}+\varrho _{33}-\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4|\varrho _{23}|^2}}\bigg ]\\&b_{23}=b_{32}^{*}=\frac{\varrho _{23} \left( \sqrt{\varrho _{22}+\varrho _{33}+\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4|\varrho _{23}|^2}}-\sqrt{\varrho _{22}+\varrho _{33}-\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\right) }{\sqrt{2} \sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\\&b_{33}=\\&\frac{1}{2 \sqrt{2} \sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\\&\quad \bigg [\left( \varrho _{22}-\varrho _{33}+\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}\right) \sqrt{\varrho _{22}+\varrho _{33}-\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}}\\&-\left( \varrho _{22}-\varrho _{33}-\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4 |\varrho _{23}|^2}\right) \sqrt{\varrho _{22}+\varrho _{33}+\sqrt{\left( \varrho _{22}-\varrho _{33}\right) ^2+4|\varrho _{23}|^2}}\bigg ]\\&b_{44}=\frac{1}{2\sqrt{2}\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2 +4 |\varrho _{14}|^2}} \\&\quad \bigg [\left( \varrho _{11}-\varrho _{44}-\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}\right) \sqrt{\varrho _{11}+\varrho _{44}+\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}}\\&- \left( \varrho _{11}-\varrho _{44}-\sqrt{\left( \varrho _{11} -\varrho _{44}\right) ^2+4 |\varrho _{14}|^2}\right) \sqrt{\varrho _{11} +\varrho _{44}+\sqrt{\left( \varrho _{11}-\varrho _{44}\right) ^2+4 |\varrho _{14} |^2}}\bigg ].\\ \end{aligned} \end{aligned}$$

Then, by working out Eq. (20), we can get the correlation matrix W (3 \(\times\) 3) as the following:

$$\begin{aligned} \begin{aligned}&W=\\&\left( \begin{array}{ccc} 2 \left( b_{11} b_{33}+b_{22} b_{44}+2\mathcal {R}(b_{14} b_{23})\right) &{} 4 i b_{14} \mathcal {I}(b_{23}) &{} 0 \\ 4 i b_{14}^* \mathcal {I}(b_{23}) &{} 2 \left( b_{11} b_{33}+b_{22} b_{44}-2\mathcal {R}(b_{14} b_{23})\right) &{} 0 \\ 0 &{} 0 &{} b_{11}^2+b_{22}^2+b_{33}^2+b_{44}^2-2 (|b_{23}|^2+|b_{14}|^2) \\ \end{array} \right) , \end{aligned} \end{aligned}$$
(28)

where its eigenvalues are given by:

$$\begin{aligned} \begin{aligned}&\mu _1=2 \left( b_{11} b_{33}+b_{22} b_{44}-\sqrt{(b_{14} b_{23})^2+(b_{23}^* b_{14}^*)^2-|b_{14}|^2\left( b_{23}^2-4 |b_{23}|^2+b_{23}^{*^2}\right) }\right) ,\\&\mu _2=2 \left( b_{11} b_{33}+b_{22} b_{44}+\sqrt{(b_{14} b_{23})^2+(b_{23}^* b_{14}^*)^2-|b_{14}|^2\left( b_{23}^2-4 |b_{23}|^2+b_{23}^{*^2}\right) }\right) ,\\&\mu _3=b_{11}^2+b_{22}^2+b_{33}^2+b_{44}^2-2 (|b_{23}|^2+|a_{14}|^2). \end{aligned} \end{aligned}$$
(29)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoudy, T.A., Ait Chlih, A. Dephasing effects on nonclassical correlations in two-qubit Heisenberg spin chain model with anisotropic spin–orbit interactions. Appl. Phys. B 130, 62 (2024). https://doi.org/10.1007/s00340-024-08196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08196-y

Navigation