Skip to main content
Log in

Investigation on Effect of Fillets on the Characteristics of Relay Electrical Contacts

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article investigates the effect of various fillets on the performance characteristics of relay electrical contacts. Finite element modeling (FEM) of a relay electrical contact is designed in 3D using the COMSOL Multiphysics simulation tool. Copper material is assigned to the electrical contact pairs. Analysis is carried out for the heights of 0.5 mm and 1 mm. Also, the structure of the contact surface is fine-tuned by using different fillets of 1.5 mm, 1 mm, and 0.5 mm. The voltages of 1 V–10 V are offered, and their performance is evaluated. The key parameters to design the contacts are identified. The electrical, thermal, and mechanical analysis is carried out. The parameters such as current density, contact interface temperature, stress, and pressure are simulated using FEM. The results present the evaluation of relays with different heights through different fillets in various voltage ranges. The results demonstrate that the low fillet radii have a higher contact area and exhibit low current density, low contact pressure, and low stress, which is more reliable and efficient. This study will be highly beneficial for relay and circuit breakers manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M. Andrusca, M. Adam, R. Burlica, A. Munteanu, A. Dragomir (2016)“Considerations regarding the influence of contact resistance on the contacts of low voltage electrical equipment.” Proc. Int. Conf. Expo. Electr. Power Eng. Doi: https://doi.org/10.1109/ICEPE.2016.7781317.

  2. Książkiewicz, A.: Contact materials used in low voltage electrical relays. Comput. Appl. Electr. Eng. 13, 300–309 (2015)

    Google Scholar 

  3. Fang, J., et al. (2019) “Investigation on fusion bridge of au electrical contacts material under different voltage” IOP Conf. Ser. Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/484/1/012025

  4. Biyik, S.; Arslan, F.; Aydin, M.: Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. J. Electron. Mater. 44(1), 457–466 (2015). https://doi.org/10.1007/s11664-014-3399-4

    Article  Google Scholar 

  5. Robert, F.; Agrawal, A.; Clement, S.: Effect of anode temperature and contact voltage on the design of arc-less micro electrical contact. Micro. Nanosyst. 11(1), 47–55 (2018). https://doi.org/10.2174/1876402911666181214143451

    Article  Google Scholar 

  6. Aronstein, J.; Hare, T.K.: AC and DC electromigration failure of aluminum contact junctions. IEEE Trans. Compon. Packag. Technol. 28(4), 701–709 (2005). https://doi.org/10.1109/TCAPT.2005.859676

    Article  Google Scholar 

  7. Gonzalez, D.; Hopfeld, M.; Berger, F.; Schaaf, P.: “Investigation on contact resistance behavior of switching contacts using a newly developed model switch. IEEE Trans. Compon. Packag. Manuf Technol 8(6), 1–11 (2018)

    Google Scholar 

  8. Mohandoss, T.; Robert, F.: Investigation of relay electrical contact failure using SEM and surface composition extraction with EDS and XRD. Iran. J. Sci. Technol. Trans. Electr. Eng. (2023). https://doi.org/10.1007/s40998-022-00586-2

    Article  Google Scholar 

  9. Crinon, E.; Evans, J.T.: The effect of surface roughness, oxide film thickness and interfacial sliding on the electrical contact resistance of aluminium. Mater. Sci. Eng. A 242(1–2), 121–128 (1998). https://doi.org/10.1016/s0921-5093(97)00508-x

    Article  Google Scholar 

  10. Robert, F.; Sharma, A.; Katare, H.; Fredo, A.R.J.: Investigation of graphene as a material for electrical contacts in the application of microrelays using finite element modeling. Mater. Res. Express 6(9), 94008 (2019). https://doi.org/10.1088/2053-1591/ab3085

    Article  Google Scholar 

  11. Robert, F.: Prediction of contact length, contact pressure and indentation depth of Au/carbon nanotube composite micro electrical contact using finite element modeling. Appl. Surf. Sci. 489(June), 470–476 (2019). https://doi.org/10.1016/j.apsusc.2019.05.169

    Article  Google Scholar 

  12. Andreasen, C.S.; Elingaard, M.O.; Aage, N.: Level set topology and shape optimization by density methods using cut elements with length scale control. Struct. Multidiscip. Optim. 62(2), 685–707 (2020). https://doi.org/10.1007/s00158-020-02527-1

    Article  MathSciNet  Google Scholar 

  13. Ferrari, F.; Sigmund, O.: A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Struct. Multidiscip. Optim. 62(4), 2211–2228 (2020). https://doi.org/10.1007/s00158-020-02629-w

    Article  MathSciNet  Google Scholar 

  14. Liu, J.; Ma, Y.: A survey of manufacturing oriented topology optimization methods. Adv. Eng. Softw. 100, 161–175 (2016). https://doi.org/10.1016/j.advengsoft.2016.07.017

    Article  Google Scholar 

  15. Xing, J., Qie, L. “Fillet design in topology optimization,” Proc. - 2020 7th Int. Conf. Inf. Sci. Control Eng. ICISCE 2020, pp. 639–643, (2020). https://doi.org/10.1109/ICISCE50968.2020.00138.

  16. Hung, C.J.; Chen, W.J.; Lin, C.A.; Shiu, H.R.; Chen, B.H.: Effect of metallic bipolar plates fillet radii on fuel cell performance. Energies 14(21), 1–11 (2021). https://doi.org/10.3390/en14217109

    Article  Google Scholar 

  17. Derakhshanpour, K.; Kamali, R.; Eslami, M.: Effect of rib shape and fillet radius on thermal-hydrodynamic performance of microchannel heat sinks: a CFD study. Int. Commun. Heat Mass Transf. 119, 104928 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104928

    Article  Google Scholar 

  18. Chu, H.Q.; Dinh, C.T.: Aerodynamic and structural performances of a single-stage transonic axial compressor with blade fillet radius. Int. J. Intell. Unmanned Syst. 11(3), 407–424 (2022). https://doi.org/10.1108/IJIUS-07-2021-0069

    Article  Google Scholar 

  19. Qian, Y.; Dersch, M.S.; Edwards, J.R.; Quirós-Orozco, R.J.: Effect of easement geometry on rail end fillet stress at bolted rail joints for transit track. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 235(7), 906–913 (2021). https://doi.org/10.1177/0954409720970000

    Article  Google Scholar 

  20. Yuan, R.; Liao, D.; Zhu, S.P.; Yu, Z.Y.; Correia, J.; De Jesus, A.: Contact stress analysis and fatigue life prediction of turbine disc–blade attachment with fir-tree tenon structure. Fatigue Fract. Eng. Mater. Struct. 44(4), 1014–1026 (2021). https://doi.org/10.1111/ffe.13410

    Article  Google Scholar 

  21. Wibawa, L.A.N.: Effect of fillet radius of UAV main landing gear on static stress and fatigue life using finite element method. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1811/1/012082

    Article  Google Scholar 

  22. Luo, H.; Mi, D.; Natsu, W.: Characteristics of ECM polishing influenced by workpiece corner feature and electrolyte flow. Precis. Eng. 56, 330–342 (2019). https://doi.org/10.1016/j.precisioneng.2019.01.003

    Article  Google Scholar 

  23. Tong, S. Y., Feng, G., Lian, Z. M., Cheng, J. S. (2019) “Simulation on temperature field of initial segment of electromagnetic rail launch,” IOP Conf. Ser. Mater. Sci. Eng. 657(1). https://doi.org/10.1088/1757-899X/657/1/012067

  24. S. Shang, Z. Wang, W. Li, C. Han, and Z. Wang (2019) The performance degradation comparison test and failure mechanism of silver metal oxide contact materials. In Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts. https://doi.org/10.1109/HOLM.2019.8923916.

  25. Chen, H.; Wang, P.; Hernandez, J.: “Study of silver-graphene tungsten material for low voltage electrical contact”, in. IEEE Holm Conf. Electr. Contacts 2019, 142–148 (2019). https://doi.org/10.1109/HOLM.2019.8924028

    Article  Google Scholar 

  26. Li L., Zhang, L., Sun Y., Wang Y., Gan, Z. (2019) “Ohmic contact characteristic of Ti/Al/Ni/Au on AlGaN,” In 2019 20th International Conference on Electronic Packaging Technology(ICEPT), pp. 1–3. https://doi.org/10.1109/ICEPT47577.2019.245606.

  27. K. Yasuoka, K., Yamada, Y., Chen, M. (2019) “Contact resistance and Arc-free commutation current of tungsten-clad copper contacts for a hybrid DC switch,” in 2019 IEEE Holm Conference on Electrical Contacts. pp. 359–362. https://doi.org/10.1109/HOLM.2019.8923889

  28. Parel, K.; Paynter, R.; Nowell, D.: Linear relationship of normal and tangential contact stiffness with load. Proc. R. Soc. (2020). https://doi.org/10.1098/rspa.2020.0329

    Article  Google Scholar 

  29. Cyster, M.J.; Smith, J.S.; Vaitkus, J.A.; Vogt, N.; Russo, S.P.; Cole, J.H.: Effect of atomic structure on the electrical response of aluminum oxide tunnel junctions. Phys. Rev. Res. 2(1), 13110 (2020)

    Article  Google Scholar 

  30. Persson, B.N.J.: On the electric contact resistance. Tribol. Lett. 70(3), 88 (2022). https://doi.org/10.1007/s11249-022-01630-2

    Article  Google Scholar 

  31. Malucci, RD. (2022) “Impact of layer thickness on contact resistance of multi-spot contacts,” in 2022 IEEE 67th Holm Conference on Electrical Contacts (HLM), pp. 1–6. https://doi.org/10.1109/HLM54538.2022.9969835.

  32. Han, Z.; Ge, S.; Li, W.; Zhao, Z.; Shen, J.: Contact reconstruction and contact spot analysis of microscopic contact surfaces based on feature matching. IEEE Trans. Compon. Packag. Manuf Technol. 13(11), 1757–1763 (2023). https://doi.org/10.1109/TCPMT.2023.3323673

    Article  Google Scholar 

  33. Malucci, R. D. “The effects plated layers have on single spot contact resistance,” in 2023 IEEE 68th holm conference on electrical contacts (HOLM), pp. 1–5 (2023). https://doi.org/10.1109/HOLM56075.2023.10352238.

  34. Ren, W., Zhi, H., Xue, S., Zhai, G., Song, J. “Numerical simulation and experimental verification for contact spot temperature and electrical contact resistance of rivet contacts,” in ICEC 2014; The 27th International Conference on Electrical Contacts. pp. 1–5 (2014)

  35. Parkhe, A.; Wangikar, S.; Patil, P.; Vhare, C.; Kashid, D.; Pawar, P.: Analytical and numerical stress analysis of composite box beam in dynamic condition and validation with COMSOL multiphysics software. Aegaeum 8, 380–387 (2020)

    Google Scholar 

  36. Kumar, P.; Sairam, C.; Dender, V.; Rajesh, A.: Modeling and simulation of applied load on lenin fiber composite materials using COMSOL. IOP Conf. Ser. Mater. Sci. Eng. 981(4), 042020 (2020). https://doi.org/10.1088/1757-899X/981/4/042020

    Article  Google Scholar 

  37. Shaohui, Q.; Shuai, W.; Yuhuan, Z.; Jun, X.; Yuxin, C.; Can, W.: Heat transfer simulation study of hot oil tubes based on COMSOL. J. Phys. Conf. Ser. 1986(1), 12100 (2021). https://doi.org/10.1088/1742-6596/1986/1/012100

    Article  Google Scholar 

  38. Corrêa Ribeiro, C.A.; Ferreira, J.R.; S. M. M. Lima e Silva,: Thermal influence analysis of coatings and contact resistance in turning cutting tool using COMSOL. Int. J. Adv. Manuf. Technol. 118(1), 275–289 (2022). https://doi.org/10.1007/s00170-021-07835-4

    Article  Google Scholar 

  39. Lankenau, T.; Graf, M.: Simulation of mechanical relays under coupled electromagnetic physics and structural dynamics. Int. J. Multiphys. 16(1), 67–80 (2022). https://doi.org/10.21152/1750-9548.16.1.67

    Article  Google Scholar 

  40. Robert, F.; Agrawal, A.; Clement, S.: Effect of anode temperature and contact voltage on the design of arc- less micro electrical contact. Micro. Nanosyst. 11(1), 47–55 (2019). https://doi.org/10.2174/1876402911666181214143451

    Article  Google Scholar 

  41. Ewuntomah, C. M., Oberrath, J. “3D Simulation of electric arcing and pressure increase in an automotive hvdc relay during a short circuit situation,” in 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM), 2020, pp. 58–64. https://doi.org/10.1109/HLM49214.2020.9307918.

  42. Javadipour, M.; Mehran, K.: Analysis of current density in the electrode and electrolyte of lithium-ion cells for ageing estimation applications. IET Smart Grid 4(2), 176–189 (2021). https://doi.org/10.1049/stg2.12018

    Article  Google Scholar 

  43. Li, C., et al.: Influence of armature movement velocity on the magnetic field distribution and current density distribution in railgun. IEEE Trans. Plasma Sci. 48(6), 2308–2315 (2020). https://doi.org/10.1109/TPS.2020.2990926

    Article  Google Scholar 

  44. Yang, P.; Banerjee, S.; Kuang, W.; Ding, Y.; Ma, Q.; Zhang, P.: Current crowding and spreading resistance of electrical contacts with irregular contact edges. J. Phys. D Appl. Phys. 53(48), 485303 (2020). https://doi.org/10.1088/1361-6463/abadc3

    Article  Google Scholar 

  45. Jang, T., et al.: Nanometer-scale surface roughness of a 3-D Cu substrate promoting Li nucleation in Li-metal batteries. ACS Appl. Energy Mater. 4(3), 2644–2651 (2021). https://doi.org/10.1021/acsaem.0c03210

    Article  Google Scholar 

  46. Fengyi, G.; Xin, G.; Zhiyong, W.; Yuting, W.; Xili, W.: Simulation on current density distribution of current-carrying friction pair used in pantograph-catenary system. IEEE Access 8, 25770–25776 (2020). https://doi.org/10.1109/ACCESS.2020.2971314

    Article  Google Scholar 

  47. Structural mechanics module user's Guide, version 5.4, COMSOL, Inc, www.comsol.com.

  48. AC/DC Module user's guide, version 5.4, COMSOL, Inc, www.comsol.com.

  49. Heat transfer module user's guide, version 5.4, COMSOL, Inc, www.comsol.com.

  50. Wang, Z.; Li, W.; Chen, K.; Li, Z.; Shang, S.: Storage failure mechanism analysis and reliability improvement measures for electromagnetic relay. IOP Conf. Ser. Mater. Sci. Eng. 1043(4), 42058 (2021). https://doi.org/10.1088/1757-899X/1043/4/042058

    Article  Google Scholar 

  51. Li, Q.; Lin, Y.; Wang, S.; Wang, S.; Zhu, X.: Storage life prediction method of the aerospace electromagnetic relays based on physics of failure and data-driven fusion. IEEE Access 10, 103303–103314 (2022). https://doi.org/10.1109/ACCESS.2022.3209205

    Article  Google Scholar 

  52. Smugala, D.; Gebczyk, J.; Wawro, M.; Czuchra, W.: Near-to-zero switching synchronization approach for DC electromagnet actuated relays. IEEE Trans. Ind. Electron. 69(11), 11490–11498 (2022). https://doi.org/10.1109/TIE.2021.3118373

    Article  Google Scholar 

  53. Ren, W.; Zheng, Z.: Experimental investigation of the instantaneous contact welding failure phenomena and mechanisms for general-purpose relays. Eng. Fail. Anal. 135, 106096 (2022). https://doi.org/10.1016/j.engfailanal.2022.106096

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of SRMIST Selective Excellence Research Initiative-2021: "DCFCEVB."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femi Robert.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohandoss, T., Robert, F. Investigation on Effect of Fillets on the Characteristics of Relay Electrical Contacts. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08913-x

Keywords

Navigation