Skip to main content
Log in

Altered Grooming Cycles in Transgenic Drosophila

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Head grooming in Drosophila consists of repeated sweeps of the legs across the head, comprising regular cycles. We used the GAL4-UAS system to study the effects of overexpressing shibirets1 and of Adar knockdown via RNA interference, on the period of head-grooming cycles in Drosophila. Overexpressing shibirets1 interferes with synaptic vesicle recycling and thus with cell communication, while Adar knockdown reduces RNA editing of neuronal transcripts for a large number of genes. All transgenic flies and their controls were tested at 22° to avoid temperature effects; in wild type, cycle frequency varied with temperature with a Q10 of 1.3. Two experiments were performed with transgenic shibirets1: (1) each fly was heat-shocked for 10 min at 30° immediately before testing at 22° and (2) flies were not heat shocked. In both experiments, cycle period was increased when shibirets1 was overexpressed in all neurons, but was not increased when shibirets1 was overexpressed in motoneurons alone. We hypothesize that grooming cycles in flies overexpressing shibirets1 are lengthened because of synaptic impairment in neural circuits that control head-grooming cycles. In flies with constitutive, pan-neuronal Adar knockdown, cycle period was more variable within individuals, but mean cycle period was not significantly altered. We conclude that RNA editing is essential for the maintenance of within-individual stereotypy of head-grooming cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akitake B, Ren Q, Boiko N, Ni J, Sokabe T, Stockand JD, Eaton BA, Montell C (2015) Coordination and fine motor control depends on Drosophila TRPγ. Nat Commun 6:1–13

    Article  Google Scholar 

  • Amador G, Hu D (2015) Cleanliness is next to godliness: mechanisms for staying clean. J Exp Biol 218:3164–3174

    Article  PubMed  Google Scholar 

  • Arienti M, Antony C, Wicker-Thomas C, Delbecque J-P, Jallon J-M (2010) Ontogeny of Drosophila melanogaster female sex-appeal and cuticular hydrocarbons. Integr Zool 5:272–282

    Article  PubMed  Google Scholar 

  • Artiushin G, Zhang SL, Tricoire H, Sehgal A (2018) Endocytosis at the Drosophila blood–brain barrier as a function for sleep. Elife, 7, e43326

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  Google Scholar 

  • Berkowitz A, Laurent G (1996) Local control of leg movements and motor patterns during grooming in locusts. J Neurosci 16:8067–8078

    Article  PubMed  PubMed Central  Google Scholar 

  • Boroczky K, Wada-Katsumata A, Batchelor D, Zhukovskaya M, Schal (2013) Insects groom their antennae to enhance olfactory acuity. PNAS 110:3615–3620

  • Dawkins R, Dawkins M (1976) Hierarchical and postural facilitation: rules for grooming in flies. Anim Behav 24:739–755

    Article  Google Scholar 

  • de Roode JC, Levere T (2012) Behavioral immunity in insects. Insects 3:789–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowse HB, Ringo JM, Power J, Johnson E, Kinney K, White L (1995) A congenital heart defect in Drosophila caused by an action potential mutation. J Neurogenet 10:153–168

    Article  PubMed  Google Scholar 

  • Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  Google Scholar 

  • Eibl-Eibesfeldt I, Kramer S (1958) Ethology, the comparative study of animal behavior. Q Rev Biol 33:181–211

    Article  PubMed  Google Scholar 

  • Furey E (2020) Calculator soup – online calculators, https://www.calculatorsoup.com/

  • Gleason JM (2005) Mutations and natural genetic variation in the courtship song of Drosophila. Behav Genet 35:265–277. https://doi.org/10.1007/s10519-005-3219-y

    Article  PubMed  Google Scholar 

  • Gonzalez-Bellido PT, Wardill TJ, Kostyleva R, Meinertzhagen IA, Juusola M (2009) Overexpressing temperature-sensitive dynamin decelerates phototransduction and bundles microtubules in Drosophila photoreceptors. J Neurosci 29:14199–14210

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant D, Unadkat S, Katzen A, Krishnan KS, Ramaswami M (1998) Probable mechanisms underlying interallelic complementation and temperature-sensitivity of mutations at the shibire locus of Drosophila melanogaster. Genetics 149:1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther WC (1964) Analysis of variance. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Guo L, Zhang N, Simpson JH (2022) Descending neurons coordinate anterior grooming behavior in Drosophila. Curr Biol 32:823–833. https://doi.org/10.1016/j.cub.2021.12.055

    Article  PubMed  Google Scholar 

  • Hales KG, Korey CA, Larracuente AM, Roberts DM (2015) Genetics on the fly: a primer on the Drosophila model system. Genetics 201:815–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall JC (1995) Trippings along the trail to the molecular mechanisms of biological clocks. Trends Neurosci 18:230–240

    Article  PubMed  Google Scholar 

  • Hampel S, Franconville R, Simpson JH, Seeds AM (2015) A neural command circuit for grooming movement control. eLife 4:e08758

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampel S, McKellar CE, Simpson JH, Seeds AM (2017) Simultaneous activation of parallel sensory pathways promotes a grooming sequence in. Drosophila eLife 6:e28804

    PubMed  Google Scholar 

  • Hampel S, Eichler K, Yamada D, Bock DD, Kamacouchi A, Seeds AM (2020) Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antenna. eLife 9:e59976

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris EF, Smith RN (2009) Accounting for measurement error: a critical but often overlooked process. Archiv Oral Biol 54:S107–S117

    Article  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  Google Scholar 

  • Hlavac T (1975) Grooming systems of insects: structure, mechanics. Ann Ent Soc Am 68:823–826

    Article  Google Scholar 

  • Hofstetter RW, Dempsey TD, Klepzig KD, Ayres MP (2007) Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi, and mites. Community Ecol 8:47–56

    Article  Google Scholar 

  • Hoopengardner B, Bhall T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Article  PubMed  Google Scholar 

  • Jepson JEC, Savva YA, Yocose C, Sugden AU, Sahin A, Reenan RA (2011) Engineered alterations in RNA editing modulate complex behavior in Drosophila. J Biol Chem 286:8325–8337

    Article  PubMed  Google Scholar 

  • Johnson E, Ringo J, Dowse H (2001) Dynamin, encoded by shibire, is central to cardiac function. J exp Zool 289:81–89

    Article  PubMed  Google Scholar 

  • Kadow I (2019) State-dependent plasticity of innate behavior in fruit flies. Curr Opin Neurobiol 54:60–65. https://doi.org/10.1016/j.conb.2018.08.014

    Article  Google Scholar 

  • Keegan LP, McGurk L, Palavicini JP, Brindle J, Paro S, Li X, Rosenthal JJC, O’Connell MA (2011) Functional conservation in human and Drosophila of metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucl Acid Res 39:7249–7262

    Article  Google Scholar 

  • Kilman VL, Zhang L, Meissner R-A, Burg E, Allada R (2009) Perturbing Dynamin reveals potent effects on the Drosophila circadian clock. PLoS ONE 4:e5235

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamoto T (2002) Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. PNAS 99:13232–13237

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig JH, Kogaku S, Ikeda K (1983) Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J Cell Biol 96:1517–1522

    Article  PubMed  Google Scholar 

  • Kyriakou CP, Hall JC (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. PNAS 77:6729–6733

    Article  Google Scholar 

  • Kyriakou CP, Hall JC (1989) Spectral analysis of Drosophila courtship song rhythms. Anim Behav 37:850–859

    Article  Google Scholar 

  • Kyriakou CP, Dowse HB, Zhang L, Green EW (2020) A computational error and restricted use of time series analyses underlie the failure to replicate period-dependent song rhythms in Drosophila. J Biol Rhythms 35:235–245. https://doi.org/10.1177/0748730420901929

    Article  Google Scholar 

  • Leal SM, Neckameyer WS (2002) Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J Neurobiol 50:245–251

    Article  PubMed  Google Scholar 

  • Lipps KL (1973) Comparative cleaning behavior in Drosophila. University of California Davis

  • Luan H, Diao F, Scott RL, White BH (2020) The Drosophila split GAL4 system for neural circuit mapping. Front Neural Circuits 14:603397

    Article  PubMed  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements

  • Marder E, Haddad SA, Goeritz ML, Rosenbaum P, Kispersky T (2015) How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system. J Comp Physiol A 201:851–856

    Article  Google Scholar 

  • Mueller JM, Ravbar P, Simpson JH, Carlson JM (2019) Drosophila melanogaster grooming possesses syntax with distinct rules at different temporal scales. PLoS Comput Biol 15(6):e1007105. https://doi.org/10.1371/journal.pcbi.1007105

    Article  PubMed  PubMed Central  Google Scholar 

  • Nava E, Rodin R (2011) Adaptation and maladaptation: insights from brain plasticity. Progress Brain Res 191:177–194

    Article  Google Scholar 

  • Okuno M, Tsuji K, Sato H (2012) Plasticity of grooming behavior against entomopathogenic fungus metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30:23–37. https://doi.org/10.1007/s10164-011-0285-x

    Article  Google Scholar 

  • Palladino M, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 142:437–449

    Article  Google Scholar 

  • Phillis RA, Bramlage AT, Wotus C, Whittaker A, Gramates LS, Seppala D, Farahanchi F, Caruccio P, Murphey RK (1993) Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. Genetics 133:581–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravbar P, Zhang N, Simpson JH (2021) Behavioral evidence for nested central pattern generator control of Drosophila grooming. eLife 10:e71508

    Article  PubMed  PubMed Central  Google Scholar 

  • Reingold SC, Camhi JM (1977) A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach. Periplaneta americana J Insect Physiol 23:1407–1420

    Article  Google Scholar 

  • Ringo JM (2018) Foraging by Drosophila melanogaster larvae in a patchy environment. J Insect Behav 31:176–185

    Article  Google Scholar 

  • Ringo JM (2020) How do flies keep clean? Head grooming in Drosophila. J Ethol 38:167–172

    Article  Google Scholar 

  • Rizolli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33:788–822

    Article  Google Scholar 

  • Robertson RM, Money TGA (2012) Temperature and neuronal circuit function: compensation, tuning, and tolerance. Curr Opin Neurobiol 22:724–734. https://doi.org/10.1016/j.conb.2012.01.008

    Article  PubMed  Google Scholar 

  • Robinson JE, Paluch J, Dickman DK, Joiner WJ (2016) ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat Comm 7:10512. https://doi.org/10.1038/ncomms10512

    Article  Google Scholar 

  • Sapiro AL, Shmueli A, Henry GL, Li Q, Shalit T, Yaron O, Paas Y, Li JB, Shohat-Ophir G (2019) Illuminating spatial A-to-I RNA editing signatures within the Drosophila brain. PNAS 116:2318–2327

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, Simpson JH (2014) A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife 3:e02951

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqi O, Benzer S (1976) Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. PNAS 73:3253–3257

    Article  PubMed  PubMed Central  Google Scholar 

  • Stapleton M, Carlson JW, Celniker SE (2006) RNA editing in Drosophila melanogaster: new targets and functional consequences. RNA 12:1922–1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Szebenyi W (1969) Cleaning behaviour in Drosophila melanogaster. Anim Behav 17:641–651

    Article  Google Scholar 

  • Vandervorst P, Ghysen A (1980) Genetic control of sensory connections in Drosophila. Nature 286:65–67

    Article  PubMed  Google Scholar 

  • Villella A, Hall JC (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67–184

    Article  PubMed  Google Scholar 

  • Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373

    Article  PubMed  Google Scholar 

  • Yu Y, Zhou H, Kong Y, Pan B, Chen L, Wang H, Hao P, Li X (2016) The landscape of A-to-I editome is shaped by both positive and purifying selection. PLoS Genet 12:e1006191. https://doi.org/10.1371/journal.pgen.1006191

    Article  PubMed  PubMed Central  Google Scholar 

  • Zack S (1978) Head grooming behaviour in the praying mantis. Anim Behav 26:1107–1119

    Article  Google Scholar 

  • Zar J (1999) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Zhang N, Simpson JH (2022) A pair of commissural command neurons induces Drosophila wing grooming. iScience 25:103792

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Guo L, Simpson JH (2020) Spatial comparisons of mechanosensory information govern the grooming sequence in Drosophila. Curr Biol 30:988–1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhukovskaya M, Yanagawa A, Forschler BT (2013) Grooming behavior as a mechanism of insect disease defense. Insects 4:609–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni SJ, Hall JC (1987) Behavioral and cytogenetic analysis of the cocophony courtship song mutant and interacting genetic variants in Drosophila melanogaster. Genetics 115:461–475

  • Muhlberg AB, Warnock DE, Schmid SL (1997) Domain structure and intramolecular regulation of dynamin GTPase. EMBO J 16:6676–6683

  • Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. PNAS 109:6626–6631

  • Shorey HH (1962) Nature of the sound produced by Drosophila melanogaster during courtship. Science 137:677–678

  • Yanagawa A, Guigue A, Marion-Poll F (2014) Hygienic grooming is iinduced by contact chemicals in Drosophila melanogaster. Frontiers Behav Neurosci 8:254

Download references

Acknowledgements

Galit Shohat-Ophir and Moshe Parnas generously donated fly stocks and helped with suggestions about the experiments. We are grateful for the valuable comments of Harold Dowse and of two anonymous reviewers. Additional fly stocks were obtained from the Bloomington Drosophila Stock Center.

Author information

Authors and Affiliations

Authors

Contributions

JR and DS wrote the main manuscript and JR prepared the figures. Both authors reviewed the manuscript.

Corresponding author

Correspondence to John M. Ringo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Handling Editor: Charalambos Kyriacou.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ringo, J.M., Segal, D. Altered Grooming Cycles in Transgenic Drosophila. Behav Genet 54, 290–301 (2024). https://doi.org/10.1007/s10519-024-10180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-024-10180-3

Keywords

Navigation