Skip to main content
Log in

The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The RNAseq data that support the findings of this study are openly available in GEO database at http://www.ncbi.nlm.nih.gov/geo/. (Accession number: GSE121248 and GSE22058). The liver tissue data are not publicly available due to ethical restriction.

Abbreviations

m6A:

N6-methyladenosine

HCC:

Hepatocellular carcinomas

HBV:

Hepatitis B virus

HBV-related HCC:

Hepatitis B virus-related hepatocellular carcinomas

cccDNA:

Covalently closed circular DNA

GEO:

Gene Expression Omnibus

RF:

Random forest

SVM:

Support vector machine

ROC:

Receiver operating characteristic

DCA:

Decision curve analysis

ssGSEA:

Single sample gene set enrichment analysis

MDS:

Multidimensional scaling

DEGs:

Differentially expressed genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

DAPI:

4′,6-Diamidino-2-phenylindole

CHB:

Chronic hepatitis B

IGFBP3:

Insulin-like growth factor binding protein 3

IGFBPs:

Insulin‐like growth factor binding proteins

IGF1:

Insulin‐like growth factor‐1

HNRNPC:

Heterogeneous nuclear ribonucleoprotein C

RBM15:

RNA-binding motif protein 15

YTHDF2:

YTH N6-Methyladenosine RNA Binding Protein F2

WTAP:

Wilms tumor 1-associated protein

METTL3:

Methyltransferase-like 3

METTL14:

Methyltransferase-like 14

pri-miR126:

Primary miR126

KCs:

Kupffer cells

TNF:

Tumor necrosis factor

JNK:

JUN N-terminal kinases

VEGFs:

Vascular endothelial growth factor

CXCL1:

Chemokine (C–X–C motif) ligand 1

CXCL8:

Chemokine (C–X–C motif) ligand 8

CCL1:

Chemokine ligand 1

CCL5:

Chemokine ligand 5

IL-6:

Interleukin-6

References

  1. Villanueva A. Hepatocellular carcinoma [J]. N Engl J Med. 2019;380(15):1450–62.

    Article  CAS  PubMed  Google Scholar 

  2. Venook AP, Papandreou C, Furuse J, et al. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective [J]. Oncologist. 2010;15(Suppl 4):5–13.

    Article  PubMed  Google Scholar 

  3. Tian T, Song C, Jiang L, et al. Hepatitis B virus infection and the risk of cancer among the Chinese population [J]. Int J Cancer. 2020;147(11):3075–84.

    Article  CAS  PubMed  Google Scholar 

  4. Razavi-Shearer D, Gamkrelidze I, Nguyen MH, Chen DS, Van Damme P, Abbas Z, Abdulla M, Abou Rached A, Adda D, Aho I, Akarca U. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study [J]. Lancet Gastroenterol Hepatol. 2018;3(6):383–403.

    Article  Google Scholar 

  5. Xie D, Shi J, Zhou J, et al. Clinical practice guidelines and real-life practice in hepatocellular carcinoma: a Chinese perspective. Clin Mol Hepatol. 2023;29(2):206–16.

    Article  PubMed  Google Scholar 

  6. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma [J]. Gastroenterology. 2019;156(2):477-91.e1.

    Article  PubMed  Google Scholar 

  7. Ayub A, Ashfaq UA, Haque A. HBV induced HCC: major risk factors from genetic to molecular level [J]. Biomed Res Int. 2013;2013: 810461.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma [J]. J Hepatol. 2016;64(1 Suppl):S84-s101.

    Article  CAS  PubMed  Google Scholar 

  9. Xie DY, Ren ZG, Zhou J, et al. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights [J]. Hepatobiliary Surg Nutr. 2020;9(4):452–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Inoue T, Tanaka Y. Novel biomarkers for the management of chronic hepatitis B [J]. Clin Mol Hepatol. 2020;26(3):261–79.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism [J]. Cell Res. 2018;28(6):616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu ZX, Li LM, Sun HL, et al. Link between m6A modification and cancers [J]. Front Bioeng Biotechnol. 2018;6:89.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a novel regulator of the immune system [J]. Nat Immunol. 2020;21(5):501–12.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Xiao J, Bai J, et al. Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types [J]. Mol Cancer. 2019;18(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 [J]. Hepatology. 2018;67(6):2254–70.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Ni Y, Zhang L, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation [J]. Signal Transduct Target Ther. 2021;6(1):76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation [J]. Oncogene. 2020;39(23):4507–18.

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Chai P, Jia R, et al. Novel insights on m(6)A RNA methylation in tumorigenesis: a double-edged sword [J]. Mol Cancer. 2018;17(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bao X, Shi R, Zhao T, et al. Mast cell-based molecular subtypes and signature associated with clinical outcome in early-stage lung adenocarcinoma [J]. Mol Oncol. 2020;14(5):917–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis [J]. J Clin Oncol. 2008;26(8):1364–70.

    Article  PubMed  Google Scholar 

  21. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking [J]. Bioinformatics. 2010;26(12):1572–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles [J]. Nat Methods. 2015;12(5):453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res. 2015;43(7): e47.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang B, Wu Q, Li B, et al. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer [J]. Mol Cancer. 2020;19(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kostyusheva A, Brezgin S, Glebe D, et al. Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification [J]. Emerg Microbes Infect. 2021;10(1):2264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang W, Chen S, Liu J, et al. Investigation of IGF1, IGF2BP2, and IGFBP3 variants with lymph node status and esophagogastric junction adenocarcinoma risk [J]. J Cell Biochem. 2019;120(4):5510–8.

    Article  CAS  PubMed  Google Scholar 

  27. Clemmons DR. Insulin-like growth factor binding proteins and their role in controlling IGF actions [J]. Cytokine Growth Factor Rev. 1997;8(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  28. Luo SM, Tan WM, Deng WX, et al. Expression of albumin, IGF-1, IGFBP-3 in tumor tissues and adjacent non-tumor tissues of hepatocellular carcinoma patients with cirrhosis [J]. World J Gastroenterol. 2005;11(27):4272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu X, Jin Y, Wan X, et al. SALIS transcriptionally represses IGFBP3/Caspase-7-mediated apoptosis by associating with STAT5A to promote hepatocellular carcinoma [J]. Cell Death Dis. 2022;13(7):642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang LJ, Tang Q, Wu J, et al. Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells [J]. J Exp Clin Cancer Res. 2016;35:59.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Zheng Y, Liu H, et al. Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction [J]. Int J Oncol. 2017;51(3):791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutschner T, Hämmerle M, Pazaitis N, et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma [J]. Hepatology. 2014;59(5):1900–11.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment [J]. ACS Cent Sci. 2022;8(8):1102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu Z, Du Y, Zhao X, et al. Diagnostic, therapeutic, and prognostic value of the ma writer complex in hepatocellular carcinoma [J]. Front Cell Dev Biol. 2022;10: 822011.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lu M, Wu J, Hao Z-W, et al. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress [J]. Hepatology. 2018;68(1):317–32.

    Article  CAS  PubMed  Google Scholar 

  36. Huang H, Weng H, Chen J. mA modification in coding and non-coding RNAs: roles and therapeutic implications in cancer [J]. Cancer Cell. 2020;37(3):270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang B, Wu Q, Li B, et al. mA regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer [J]. Mol Cancer. 2020;19(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation [J]. Nucleic Acids Res. 2020;48(7):3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen S, Zhang R, Jiang Y, et al. Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types [J]. Mol Cancer. 2021;20(1):67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response [J]. J Immunother Cancer. 2019;7(1):267.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li X, Ramadori P, Pfister D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer [J]. Nat Rev Cancer. 2021;21(9):541–57.

    Article  CAS  PubMed  Google Scholar 

  42. Jenne CN, Kubes P. Immune surveillance by the liver [J]. Nat Immunol. 2013;14(10):996–1006.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan D, Huang S, Berger E, et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS [J]. Cancer Cell. 2017;31(6):771-89.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan X, Liu J, Li M, et al. The association of serum IL-33/ST2 expression with hepatocellular carcinoma [J]. BMC Cancer. 2023;23(1):704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Varricchi G, Pecoraro A, Marone G, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer [J]. Front Immunol. 2018;9:1595.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer [J]. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma [J]. N Engl J Med. 2020;382(20):1894–905.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate contributors for sharing their valuable datasets and GEO Database for giving their platforms. Then, we would like to thank the participating patients for the source of HBV-related HCC tissue specimens.

Funding

This research was funded by Natural Science Foundation of China and Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University, China. Grant/Award Number: 82070641, 81971310 and 2022-XKCRC-04.

Author information

Authors and Affiliations

Authors

Contributions

Qijuan Zang and Yalin Ju have the same contribution. Conceptualization, Qijuan Zang; formal analysis, Yalin Ju; designed the study and funding acquisition, Yingli He; immunofluorescence experiments, Siyi Liu; methodology, Chengbin Zhu, Liangru Liu, and Weicheng Xu; writing—original draft, Yalin Ju, Qijuan Zang, and Siyi Liu; writing—review and editing, Shaobo Wu. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yingli He.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Two groups of human liver tissue specimens were collected from patients of the First Affiliated Hospital of Xi'an Jiaotong University. Three adjacent normal samples and three hepatitis B-related hepatocellular cancer samples were chosen for analysis. The clinical diagnoses were confirmed by pathobiology. All specimens were fixed in formalin and paraffinized for immunofluorescence (IF). Prior to participation in the study, all research participants provided written informed consent. The study protocol complied with the ethical guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of the First Affiliated Hospital of Xi'an Jiaotong University (No. XJTU1AF2019LSL-026).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 573 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Q., Ju, Y., Liu, S. et al. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Human Cell 37, 752–767 (2024). https://doi.org/10.1007/s13577-024-01044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01044-3

Keywords

Navigation