Skip to main content
Log in

NGS-Based Metagenomics Depicting Taxonomic and Functional Insights into North-Western Himalayan Hot Springs

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Hot springs have tremendous significance due to their divulging physiochemical features. In the recent past, metagenomics has emerged as a unique methodology to explore microbiota as well as new biocatalysts possessing advantageous biochemical properties from hot springs. In the present study, metagenomics has been employed for microbial diversity exploration and identification of genes involved in various metabolic pathways among two hot springs, Manikaran and Tatapani, located in Himachal Pradesh, India. Taxonomic analysis of both metagenomes revealed the dominance of the Proteobacteria phylum. Genomic signatures of other bacterial phyla such as Chloroflexi, Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, and Firmicutes were also found in significant abundance in both the metagenomes. The abundance of microorganisms belonging to genera, especially Nitrospira, Thauera, Meiothermus, Thiobacillus, Massilia, and Anaerolinea, was reported to be prevalent in the hot springs. A significant amount of metagenomic data remained taxonomically unclassified, which indeed emphasizes the scientific importance of these thermoaquatic niches. The functional potential analysis of both metagenomes revealed pathways related to carbohydrate metabolism, followed by amino acid metabolism, energy metabolism, genetic information processing, metabolism of cofactors and vitamins, membrane transporter, and signal transduction. Exploration of biomass-modifying biocatalysts enumerated the presence of glycoside hydrolases, glycosyl transferases, polysaccharide lyases, and carbohydrate esterases in the metagenomic data. Together, these findings offer an in-depth understanding of the microbial inhabitants in North-Western Himalayan hot springs and their underlying potential for various biotechnological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The high-quality sequence reads have been submitted to the NCBI SRA database under the BioProject ID PRJNA961923.

References

  1. Sharma N, Kumar J, Abedin M, Sahoo D, Pandey A, Rai AK, Singh SP (2020) Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 20:1–17. https://doi.org/10.1186/s12866-020-01923-3

    Article  CAS  Google Scholar 

  2. Shu WS, Huang LN (2022) Microbial diversity in extreme environments. Nat Rev Microbiol 20:219–235. https://doi.org/10.1038/s41579-021-00648-y

    Article  CAS  PubMed  Google Scholar 

  3. Kumar J, Sharma N, Singh SP (2023) Genome-resolved metagenomics inferred novel insights into the microbial community, metabolic pathways, and biomining potential of Malanjkhand acidic copper mine tailings. Environ Sci Pollut Res 30:50864–50882. https://doi.org/10.1007/s11356-023-25893-x

    Article  CAS  Google Scholar 

  4. Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP (2022) Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 204:144. https://doi.org/10.1007/s00203-022-02757-5

    Article  CAS  PubMed  Google Scholar 

  5. Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus FB, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater 382:121024. https://doi.org/10.1016/j.jhazmat.2019.121024

    Article  CAS  PubMed  Google Scholar 

  6. Ferone M, Gowen A, Fanning S, Scannell AG (2020) Microbial detection and identification methods: bench top assays to omics approaches. Compr Rev Food Sci Food Saf 19:3106–3129. https://doi.org/10.1111/1541-4337.12618

    Article  PubMed  Google Scholar 

  7. Aigle A, Prosser JI, Gubry-Rangin C (2019) The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome 14:1–10. https://doi.org/10.1186/s40793-019-0342-6

    Article  CAS  Google Scholar 

  8. Xu J (2006) Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731. https://doi.org/10.1111/j.1365-294X.2006.02882.x

    Article  CAS  PubMed  Google Scholar 

  9. Garza DR, Dutilh BE (2015) From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 72:4287–4308. https://doi.org/10.1007/s00018-015-2004-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2008) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33:236–255. https://doi.org/10.1111/j.1574-6976.2008.00152.x

    Article  CAS  PubMed  Google Scholar 

  11. Pandey A, Dhakar K, Sharma A, Priti P, Sati P, Kumar B (2015) Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India. Ann Microbiol 65:809–816. https://doi.org/10.1007/s13213-014-0921-0

    Article  CAS  Google Scholar 

  12. Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES (2016) Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol Eco 92:9. https://doi.org/10.1093/femsec/fiw137

    Article  CAS  Google Scholar 

  13. Ismail AR, Kashtoh H, Baek KH (2021) Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: biotechnological approaches and applications. Int J Biol Macromol 187:127–142. https://doi.org/10.1016/j.ijbiomac.2021.07.101

    Article  CAS  PubMed  Google Scholar 

  14. Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25:471–482. https://doi.org/10.1016/S0141-0229(99)00075-7

    Article  CAS  Google Scholar 

  15. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1. https://doi.org/10.1042/Fbse0590001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park S, Lee B, Park K (2017) Extremophilic carbohydrate active enzymes (CAZymes). J Nutr Health Food Eng 7:230–237. https://doi.org/10.15406/jnhfe.2017.07.00230

    Article  Google Scholar 

  17. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268. https://doi.org/10.1038/35051736

    Article  CAS  PubMed  Google Scholar 

  18. Kaushal G, Kumar J, Sangwan RS, Singh SP (2018) Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int J Biol Macromol 119:882–895. https://doi.org/10.1016/j.ijbiomac.2018.07.196

    Article  CAS  PubMed  Google Scholar 

  19. Mahato NK, Sharma A, Singh Y, Lal R (2019) Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics. Arch Microbiol 201:377–388. https://doi.org/10.1007/s00203-018-01616-6

    Article  CAS  PubMed  Google Scholar 

  20. Fowler CMR, Tunnicliffe V (1997) Hydrothermal vent communities and plate tectonics. Endeavour 21:164–168. https://doi.org/10.1016/S0160-9327(97)01040-5

    Article  Google Scholar 

  21. Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K et al (2016) MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11. https://doi.org/10.1016/j.ymeth.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  22. Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinform 32:1088–1090. https://doi.org/10.1093/bioinformatics/btv697

    Article  CAS  Google Scholar 

  23. Hyatt D, Chen GL, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  24. Buchfink B, Xie C, Huson D (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  25. El Hadidi M, Ruscheweyh HJ, Huson D (2013) Improved metagenome analysis using MEGAN5. In: InJoint 21st annual international conference on intelligent systems for molecular biology (ISMB) and 12th European conference on computational biology (ECCB)

  26. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  Google Scholar 

  28. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  Google Scholar 

  29. Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O et al (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841. https://doi.org/10.1128/AEM.66.7.2835-2841.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. https://doi.org/10.1007/s13205-017-0762-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Uribe-Lorio L, Brenes-Guillen L, Hernandez-Ascencio W, Mora-Amador R, Gonzalez G, Ramirez-Umana CJ et al (2019) The influence of temperature and pH on bacterial community composition of microbial mats in hot springs from Costa Rica. Microbiologyopen 8:1–26. https://doi.org/10.1002/mbo3.893

    Article  CAS  Google Scholar 

  32. Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M et al (2018) Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 9:2876. https://doi.org/10.1038/s41467-018-05020-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purcell D, Sompong U, Yim LC, Barraclough TG, Peerapornpisal Y, Pointing SB (2007) The effects of temperature, pH, and sulphide on the community structure of hyperthermophilic streamers in hot springs of Northern Thailand. FEMS Microbiol Ecol 60:456–466. https://doi.org/10.1111/j.1574-6941.2007.00302x

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Lopez O, Knapik K, Cerdán ME, González-Siso MI (2015) Metagenomics of an alkaline hot spring in Galicia (Spain): microbial diversity analysis and screening for novel lipolytic enzymes. Front Microbiol 6:1291

    Article  PubMed  PubMed Central  Google Scholar 

  35. Knapik K, Becerra M, González-Siso MI (2019) Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios hot spring in Spain. Sci Rep 9:11195

    Article  PubMed  PubMed Central  Google Scholar 

  36. DeCastro ME, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso MI (2021) Exploring the taxonomical and functional profile of As Burgas hot spring focusing on thermostable β-galactosidases. Sci Rep 11:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mohanrao MM, Singh DP, Kanika K, Goyal E, Singh AK (2016) Deciphering the microbial diversity of Tattapani hot water spring using metagenomic approach. Int J Agric Sci Res 6:371–382

    Google Scholar 

  38. Ghilamicael AM, Budambula NL, Anami SE, Mehari T, Boga HI (2017) Evaluation of prokaryotic diversity of five hot springs in Eritrea. BMC Microbiol 17:1–13

    Article  Google Scholar 

  39. Kaur R, Rajesh C, Sharma R, Boparai JK, Sharma PK (2018) Metagenomic investigation of bacterial diversity of hot spring soil from Manikaran, Himachal Pradesh, India. Ecol Genet Genom 6:16–21

    Google Scholar 

  40. Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618

    Article  PubMed  Google Scholar 

  42. Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang L (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS ONE 8:e62901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cuecas A, Portillo MC, Kanoksilapatham W, Gonzalez JM (2014) Bacterial distribution along a 50 °C temperature gradient reveals a parceled out hot spring environment. Microb Ecol 68:729–739

    Article  CAS  PubMed  Google Scholar 

  44. Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, Bryant DA (2016) The dark side of the mushroom spring microbial mat: life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Frontiers Microbiol 7:919

    Article  Google Scholar 

  45. Sharma A, Paul D, Dhotre D, Jani K, Pandey A, Shouche YS (2017) Deep sequencing analysis of bacterial community structure of soldhar hot spring, India. Microbiology 86:136–142

    Article  CAS  Google Scholar 

  46. Coman C, Drugă B, Hegedus A, Sicora C, Dragoş N (2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17:523–534

    Article  PubMed  Google Scholar 

  47. Vora D, Shekh S, Joshi M, Patel A, Joshi CG (2023) Taxonomic and functional metagenomics profiling of Tuwa and Unnai hot springs microbial communities. Ecol Genet Genom 26:100160

    CAS  Google Scholar 

  48. Tripathy S, Padhi SK, Mohanty S, Samanta M, Maiti NK (2016) Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism. Extremophiles 20:525–536. https://doi.org/10.1007/s00792-016-0846-6

    Article  CAS  PubMed  Google Scholar 

  49. Thiel V, Garcia-Costas A, Fortney NW, Martinez JN, Tank M, Roden E et al (2018) “Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic, sulfate-reducing member of the Bacteroidetes/Chlorobi inhabiting hot spring environments. Front Microbiol 9:3159. https://doi.org/10.3389/fmicb.2018.03159

    Article  PubMed  Google Scholar 

  50. Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A et al (2016) Metagenomic analysis of hot springs in central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123. https://doi.org/10.3389/fmicb.2016.02123

    Article  PubMed  Google Scholar 

  51. Singh Y, Gulati A, Singh DP, Khattar JIS (2018) Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: a morphological, molecular and ecological approach. Algal Res 29:179–192. https://doi.org/10.1016/j.algal.2017.11.023

    Article  Google Scholar 

  52. Arshad A, Dalcin Martins P, Frank J, Jetten MSM, den Camp HJMO, Welte CU (2017) Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ Microbiol 19:4965–4977. https://doi.org/10.1111/1462-2920.13977

    Article  CAS  PubMed  Google Scholar 

  53. Mitchell WJ, Tangney M (2005) Carbohydrate uptake by the phosphotransferase system and other mechanisms. In: Durre P (ed) Handbook on Clostridia. CRC Press, Boca Raton, pp 155–175. https://researchportal.hw.ac.uk/en/publications/carbohydrate-uptake-by-the-phosphotransferase-system-andother-me

  54. Warren GL, Petsko GA (1995) Composition analysis of α-helices in thermophilic organisms. Protein Eng Des Sel 8:905–913. https://doi.org/10.1093/protein/8.9.905

    Article  CAS  Google Scholar 

  55. He Y, Xiao X, Wang F (2013) Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas basin. Front Microbiol 4:148. https://doi.org/10.3389/fmicb.2013.00148

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sangwan N, Lambert C, Sharma A, Gupta V, Khurana P, Khurana JP, Sockett E, Gilbert JA, Lal R (2015) Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator–prey genotypes. Environ Microbiol Rep 7:812–823. https://doi.org/10.1111/1758-2229.12297

    Article  CAS  PubMed  Google Scholar 

  57. Yakovlieva L, Walvoort MT (2019) Processivity in bacterial glycosyltransferases. ACS Chem Bio 15:3–16. https://doi.org/10.1021/acschembio.9b00619

    Article  CAS  Google Scholar 

  58. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341. https://doi.org/10.1128/MMBR.00052-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhate MP, Molnar KS, Goulian M, DeGrado WF (2015) Signal transduction in histidine kinases: insights from new structures. Structure 23:981–994. https://doi.org/10.1016/j.str.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LM, da Silva AR, Setubal JC (2017) Genome-centric analysis of a thermophilic and cellulolytic bacterial consortium derived from composting. Frontiers Microbiol 8:644

    Article  Google Scholar 

  61. Chan CH, Chan K, Tay YL, Chua YT, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ranjan R, Yadav MK, Suneja G, Sharma R (2018) Discovery of a diverse set of esterases from hot spring microbial mat and sea sediment metagenomes. Int J Biol Macromol 119:572–581

    Article  CAS  PubMed  Google Scholar 

  63. Sharma N, Sahoo D, Rai AK, Singh SP (2022) A highly alkaline pectate lyase from the Himalayan hot spring metagenome and its bioscouring applications. Process Biochem 115:100–109

    Article  CAS  Google Scholar 

  64. Gupta V, Gupta N, Capalash N, Sharma P (2017) Bio-prospecting bacterial diversity of hot springs in Northern Himalayan region of India for laccases. Indian J Microbiol 57:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reichart NJ, Bowers RM, Woyke T, Hatzenpichler R (2021) High potential for biomass-degrading enzymes revealed by hot spring metagenomics. Front Microbiol 12:668238

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Biotechnology, HPU, Shimla, for facilitating the present work. SR acknowledges CSIR-UGC (09/237(0167)/2018-EMR-I) for providing fellowship in the form of Junior and Senior Research Fellow. NS and SPS acknowledge the Department of Biotechnology (DBT), Govt. of India for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Savitri; methodology: Savitri, Sudhir P. Singh; formal analysis and investigation: Shailja Rangra, Nitish Sharma; writing—original draft preparation: Shailja Rangra, Savitri, Nitish Sharma; writing—review and editing: Savitri, Sudhir P. Singh, Prem Lata, Kiran Bala Sharma, Reena Kumari; supervision: Savitri and Sudhir P. Singh. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Savitri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interest.

Human and Animals Rights

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1767 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangra, S., Sharma, N., Lata, P. et al. NGS-Based Metagenomics Depicting Taxonomic and Functional Insights into North-Western Himalayan Hot Springs. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01248-z

Keywords

Navigation