Skip to main content

Advertisement

Log in

Effect of Saponin on Methylene Blue (MB) Photo-Antimicrobial Activity Against Planktonic and Biofilm Form of Bacteria

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial resistance has led to the spread of bacterial infections such as chronic wound infections. Finding solutions for combating resistant bacteria in chronic wounds such as Staphylococcus aureus and Pseudomonas aeruginosa became an attractive theme among researchers. P. aeruginosa is a gram negative opportunistic human pathogenic bacterium that is difficult to treat due to its high resistance to antibiotics. S. aureus (gram negative bacterium) also has a high antibiotic resistance, so that it is resistant to vancomycin (VRSA), tetracycline, fluoroquinolones and beta-lactam antibiotics including penicillin and methicillin (MRSA). In particular, S. aureus and P. aeruginosa have intrinsic and acquired antibiotic resistance, making the clinical management of infection a real challenge, especially in patients with comorbidities. aPDT can be proposed as a new method in the treatment of multi-drug resistant bacteria in chronic wound infection conditions. In this study, the effect of saponin (100 μg/mL) on photodynamic inactivation on planktonic and biofilm forms of P. aeruginosa (ATCC 27853) and S. aureus (ATCC 25923) strains and on Human Dermal Fibroblast (HDF) cells was investigated. Methylene blue (MB) was used as photosensitizer (0, 10, 50, 100 μg/mL). The light source was a red LED source (660 nm; power density: 20 mW/cm2) which is related to the maximum absorption of MB. The results showed that the use of saponin in combination with MB-aPDT (Methylene Blue-antibacterial photodynamic therapy) reduces the phototoxic activity of MB due to decreasing the monomer form of MB. This result was obtained by spectrophotometric study. Also, the result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay showed that 8 min of irradiation (660 nm) at 10 μg/mL concentration of alone MB had the lowest phototoxic effect on HDF cells. Due to reduced phototoxic properties of MB in this method, detergents containing saponins not recommended to applied at the same time with MB-aPDT in wound infection area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apers S, Baronikova S, Sindambiwe JB, Witvrouw M, De Clercq E, Vanden Berghe D, Van Marck E, Vlietinck A, Pieters L (2001) Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins from Maesa lanceolata: establishment of structure-activity relationships. Planta Med 67:528–532. https://doi.org/10.1055/s-2001-16489

    Article  CAS  PubMed  Google Scholar 

  2. Arabski M, Węgierek-Ciuk A, Czerwonka G, Lankoff A, Kaca W (2012a) Effects of saponins against clinical E. coli strains and eukaryotic cell line. J Biomed Biotechnol. https://doi.org/10.1155/2012/286216

  3. Arabski M, Węgierek-Ciuk A, Czerwonka G, Lankoff A, Kaca W (2012b) Effects of saponins against clinical E. coli strains and eukaryotic cell line. J Biomed Biotechnol. https://doi.org/10.1155/2012/286216

  4. Bonham PA (2009) Identifying and treating wound infection: topical and systemic antibiotic therapy. J Gerontol Nurs 35:12–16. https://doi.org/10.3928/00989134-20090903-03

    Article  PubMed  Google Scholar 

  5. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46. https://doi.org/10.1086/533590

  6. Brohem CA, Da LB, Cardeal S, Tiago M, Soengas MS, De Moraes Barros SB, Maria-Engler SS (2011) Artificial skin in perspective: concepts and applications. Wiley Online Library 24:35–50. https://doi.org/10.1111/j.1755-148X.2010.00786.x

    Article  Google Scholar 

  7. Centers for Disease Control and prevension. 2013. ANTIBIOTIC RESISTANCE THREATS in the United States. [place unknown].

  8. Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89–105. https://doi.org/10.1016/j.mimet.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  9. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P (2020) Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod 149:112350. https://doi.org/10.1016/j.indcrop.2020.112350

  10. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner ACR, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44:751–759. https://doi.org/10.1111/j.1600-0765.2008.01187.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghasemi M, Khorsandi K, Kianmehr Z (2021) Photodynamic inactivation with curcumin and silver nanoparticles hinders Pseudomonas aeruginosa planktonic and biofilm formation: evaluation of glutathione peroxidase activity and ROS production. World J Microbiol Biotechnol 37:149. https://doi.org/10.1007/s11274-021-03104-4

    Article  CAS  PubMed  Google Scholar 

  12. Hassan SM, Byrd JA, Cartwright AL, Bailey CA (2010) Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Appl Biochem Biotechnol 162:1008–1017. https://doi.org/10.1007/s12010-009-8838-y

    Article  CAS  PubMed  Google Scholar 

  13. Hu WL, Liu JX, Ye JA, Wu YM, Guo YQ (2005) Effect of tea saponin on rumen fermentation in vitro. Anim Feed Sci Technol 120:333–339. https://doi.org/10.1016/J.ANIFEEDSCI.2005.02.029

    Article  CAS  Google Scholar 

  14. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344. https://doi.org/10.1016/J.JHIN.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  15. Khorsandi K, Hosseinzadeh R, Chamani E (2020) Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: an in vitro study. Cancer Cell Int 20:525. https://doi.org/10.1186/s12935-020-01616-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khorsandi K, Hosseinzadeh R, Chamani E (2020) Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: an in vitro study. Cancer Cell Int 20:1–15. https://doi.org/10.1186/S12935-020-01616-X/FIGURES/12

    Article  Google Scholar 

  17. Kim YA, Kong CS, Lee JI, Kim H, Park HY, Lee HS, Lee C, Seo Y (2012) Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea. Bioorg Med Chem Lett 22:4318–4322. https://doi.org/10.1016/J.BMCL.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  18. Landis SJ (2008) Chronic wound infection and antimicrobial use. Adv Skin Wound Care 21. https://doi.org/10.1097/01.ASW.0000323578.87700.A5

  19. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. https://doi.org/10.1056/NEJM199808203390806

    Article  CAS  PubMed  Google Scholar 

  20. Maisch T (2015) Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526. https://doi.org/10.1039/C5PP00037H

    Article  CAS  PubMed  Google Scholar 

  21. Meng ZY, Zhang JY, Xu SX, Sugahara K (1999) Steroidal saponins from Anemarrhena asphodelaides and their effects on superoxide generation. Planta Med 65:661–663. https://doi.org/10.1055/s-2006-960842

    Article  CAS  PubMed  Google Scholar 

  22. Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, Ghazaeian M, Shahidi FK (2020) Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis Photodyn Ther 29:101639. https://doi.org/10.1016/J.PDPDT.2019.101639

    Article  CAS  PubMed  Google Scholar 

  23. Mishra SC, Chhatbar KC, Kashikar A, Mehndiratta A (2017) Diabetic foot. BMJ 359:j5064. https://doi.org/10.1136/BMJ.J5064

    Article  PubMed  PubMed Central  Google Scholar 

  24. Motallebi M, Khorsandi K, Sepahy AA, Chamani E, Hosseinzadeh R (2020a) Effect of rutin as flavonoid compound on photodynamic inactivation against P. aeruginosa and S. aureus. Photodiagnosis Photodyn Ther 32:102074. https://doi.org/10.1016/j.pdpdt.2020.102074

  25. Motallebi M, Khorsandi K, Sepahy AA, Chamani E, Hosseinzadeh R (2020b) Effect of rutin as flavonoid compound on photodynamic inactivation against P. aeruginosa and S. aureus. Photodiagnosis Photodyn Ther [Internet]. 32:102074. https://doi.org/10.1016/j.pdpdt.2020.102074

  26. Mshvildadze V, Favel A, Delmas F, Pharmazie RE, 2000 U. (2000) Antifungal and antiprotozoal activities of saponins from Hedera colchica. pascal-francis.inist.fr.

  27. Nature E (2013) The antibiotic alarm. Nature 2013 495:141–141. https://doi.org/10.1038/495141a

  28. O’Riordan K, Akilov OE, Hasan T (2005) The potential for photodynamic therapy in the treatment of localized infections. Photodiagn Photodyn Ther 2:247–262. https://doi.org/10.1016/S1572-1000(05)00099-2

    Article  CAS  Google Scholar 

  29. Pantosti A, Sanchini A, Monaco M (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2:323–334. https://doi.org/10.2217/17460913.2.3.323

    Article  CAS  PubMed  Google Scholar 

  30. Pérez-Laguna V, García-Luque I, Ballesta S, Pérez-Artiaga L, Lampaya-Pérez V, Rezusta A, Gilaberte Y (2020) Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 31:101810. https://doi.org/10.1016/j.pdpdt.2020.101810

    Article  CAS  PubMed  Google Scholar 

  31. Pérez-Laguna V, García-Malinis AJ, Aspiroz C, Rezustata A, Gilaberteerte Y (2018) Antimicrobial effects of photodynamic therapy. G Ital Dermatol Venereol 153:833–846. https://doi.org/10.23736/S0392-0488.18.06007-8

  32. Pérez-Laguna V, Gilaberte Y, Millán-Lou MI, Agut M, Nonell S, Rezusta A, Hamblin MR (2019) A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: a systematic review. Photochem Photobiol Sci 18:1020–1029. https://doi.org/10.1039/c8pp00534f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Read AF, Woods RJ (2014) Management antibiotic resistance. Evol Med Public Health, 147. https://doi.org/10.1093/emph/eou024

  34. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. https://doi.org/10.1155/2016/2475067

  35. Serra R, Grande R, Butrico L, Rossi A, Settimio UF, Caroleo B, Amato B, Gallelli L, De Franciscis S (2015) Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 13:605–613. https://doi.org/10.1586/14787210.2015.1023291

    Article  CAS  PubMed  Google Scholar 

  36. Shafiei M, Ali AA, Shahcheraghi F, Saboora A, Noghabi KA (2014) Eradication of Pseudomonas aeruginosa biofilms using the combination of n-butanolic Cyclamen coum extract and Ciprofloxacin. Jundishapur J Microbiol 7:14358. https://doi.org/10.5812/JJM.14358

    Article  Google Scholar 

  37. Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, Darban-Sarokhalil D (2021) Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagn Photodyn Ther 35:102398. https://doi.org/10.1016/J.PDPDT.2021.102398

    Article  CAS  Google Scholar 

  38. Shang F, Wang H, Xue T (2020) Anti-biofilm effect of tea saponin on a Streptococcus agalactiae strain isolated from bovine mastitis. Animals 10:1713. https://doi.org/10.3390/ANI10091713

  39. Wang R, Yu Z (2007) Validity and reliability of Benesi-Hildebrand method. Acta Phys Chim Sin 23:1353–1359. https://doi.org/10.1016/S1872-1508(07)60071-0

    Article  CAS  Google Scholar 

  40. Wu W, Jin Y, Bai F, Jin S (2015) Pseudomonas aeruginosa. Molecular Med Microbiol Second Edition 2–3:753–767. https://doi.org/10.1016/B978-0-12-397169-2.00041-X

    Article  CAS  Google Scholar 

  41. Yang SM, Lee DW, Park HJ, Kwak MH, Park JM, Choi MG (2019) Hydrogen peroxide enhances the antibacterial effect of methylene blue-based photodynamic therapy on biofilm-forming bacteria. Photochem Photobiol 95:833–838. https://doi.org/10.1111/PHP.13056

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khatereh Khorsandi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzamian, S., Khorsandi, K., Hosseinzadeh, R. et al. Effect of Saponin on Methylene Blue (MB) Photo-Antimicrobial Activity Against Planktonic and Biofilm Form of Bacteria. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01245-2

Keywords

Navigation