skip to main content
research-article
Free Access
Just Accepted

4D Facial Expression Diffusion Model

Online AM:28 March 2024Publication History
Skip Abstract Section

Abstract

Facial expression generation is one of the most challenging and long-sought aspects of character animation, with many interesting applications. The challenging task, traditionally having relied heavily on digital craftspersons, remains yet to be explored. In this paper, we introduce a generative framework for generating 3D facial expression sequences (i.e. 4D faces) that can be conditioned on different inputs to animate an arbitrary 3D face mesh. It is composed of two tasks: (1) Learning the generative model that is trained over a set of 3D landmark sequences, and (2) Generating 3D mesh sequences of an input facial mesh driven by the generated landmark sequences. The generative model is based on a Denoising Diffusion Probabilistic Model (DDPM), which has achieved remarkable success in generative tasks of other domains. While it can be trained unconditionally, its reverse process can still be conditioned by various condition signals. This allows us to efficiently develop several downstream tasks involving various conditional generation, by using expression labels, text, partial sequences, or simply a facial geometry. To obtain the full mesh deformation, we then develop a landmark-guided encoder-decoder to apply the geometrical deformation embedded in landmarks on a given facial mesh. Experiments show that our model has learned to generate realistic, quality expressions solely from the dataset of relatively small size, improving over the state-of-the-art methods. Videos and qualitative comparisons with other methods can be found at https://github.com/ZOUKaifeng/4DFM. Code and models will be made available upon acceptance.

References

  1. Juan Miguel Lopez Alcaraz and Nils Strodthoff. 2022. Diffusion-based time series imputation and forecasting with structured state space models. arXiv preprint arXiv:2208.09399(2022).Google ScholarGoogle Scholar
  2. Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. 2021. Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems 34 (2021), 17981–17993.Google ScholarGoogle Scholar
  3. Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. 2017. CVAE-GAN: fine-grained image generation through asymmetric training. In Proceedings of the IEEE international conference on computer vision. 2745–2754.Google ScholarGoogle ScholarCross RefCross Ref
  4. Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. 2021. Label-efficient semantic segmentation with diffusion models. arXiv preprint arXiv:2112.03126(2021).Google ScholarGoogle Scholar
  5. Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gotsman, Robert Sumner, and Markus Gross. 2011. High-Quality Passive Facial Performance Capture using Anchor Frames. ACM Trans. Graph. 30(07 2011), 75. https://doi.org/10.1145/2010324.1964970Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. Blanz, C. Basso, T. Poggio, and T. Vetter. 2003. Reanimating Faces in Images and Video. Computer Graphics Forum 22, 3 (2003), 641–650. https://doi.org/10.1111/1467-8659.t01-1-00712Google ScholarGoogle ScholarCross RefCross Ref
  7. Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis, Michael Bronstein, and Stefanos Zafeiriou. 2019. Neural 3d morphable models: Spiral convolutional networks for 3d shape representation learning and generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7213–7222.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hamza Bouzid and Lahoucine Ballihi. 2022. Facial Expression Video Generation Based-On Spatio-temporal Convolutional GAN: FEV-GAN. Intelligent Systems with Applications(2022), 200139.Google ScholarGoogle ScholarCross RefCross Ref
  9. Emmanuel Asiedu Brempong, Simon Kornblith, Ting Chen, Niki Parmar, Matthias Minderer, and Mohammad Norouzi. 2022. Denoising Pretraining for Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4175–4186.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dan Casas and Miguel A Otaduy. 2018. Learning nonlinear soft-tissue dynamics for interactive avatars. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 1(2018), 1–15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. 2022. Analog bits: Generating discrete data using diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202(2022).Google ScholarGoogle Scholar
  12. Shiyang Cheng, Irene Kotsia, Maja Pantic, and Stefanos Zafeiriou. 2018. 4dfab: A large scale 4d database for facial expression analysis and biometric applications. In Proceedings of the IEEE conference on computer vision and pattern recognition. 5117–5126.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In SSST@EMNLP.Google ScholarGoogle Scholar
  14. Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk. 2020. Editing in Style: Uncovering the Local Semantics of GANs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  15. D. Cosker, E. Krumhuber, and A. Hilton. 2011. A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. In 2011 International Conference on Computer Vision. 2296–2303. https://doi.org/10.1109/ICCV.2011.6126510Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Darren Cosker, Eva Krumhuber, and Adrian Hilton. 2011. A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. In 2011 international conference on computer vision. IEEE, 2296–2303.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. DeCarlo and D. Metaxas. 1996. The Integration of Optical Flow and Deformable Models with Applications to Human Face Shape and Motion Estimation. In 2013 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Los Alamitos, CA, USA, 231. https://doi.org/10.1109/CVPR.1996.517079Google ScholarGoogle ScholarCross RefCross Ref
  18. Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. 2019. Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805(2018).Google ScholarGoogle Scholar
  20. Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems 34 (2021), 8780–8794.Google ScholarGoogle Scholar
  21. Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. 2022. Continuous diffusion for categorical data. arXiv preprint arXiv:2211.15089(2022).Google ScholarGoogle Scholar
  22. Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516(2014).Google ScholarGoogle Scholar
  23. John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization.Journal of machine learning research 12, 7 (2011).Google ScholarGoogle Scholar
  24. Gabriele Fanelli, Juergen Gall, Harald Romsdorfer, Thibaut Weise, and Luc Van Gool. 2010. A 3-d audio-visual corpus of affective communication. IEEE Transactions on Multimedia 12, 6 (2010), 591–598.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. 2018. Joint 3d face reconstruction and dense alignment with position map regression network. In Proceedings of the European conference on computer vision (ECCV). 534–551.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Claudio Ferrari, Giuseppe Lisanti, Stefano Berretti, and Alberto Del Bimbo. 2017. A dictionary learning-based 3D morphable shape model. IEEE Transactions on Multimedia 19, 12 (2017), 2666–2679.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. 2022. Diffuseq: Sequence to sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933(2022).Google ScholarGoogle Scholar
  28. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.Google ScholarGoogle Scholar
  29. Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. 2022. Diffusion models as plug-and-play priors. arXiv preprint arXiv:2206.09012(2022).Google ScholarGoogle Scholar
  30. Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and Li Cheng. 2020. Action2motion: Conditioned generation of 3d human motions. In Proc. ACM Multimedia. 2021–2029.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei, and Stan Z Li. 2020. Towards fast, accurate and stable 3d dense face alignment. In European Conference on Computer Vision. Springer, 152–168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. 2022. Flexible diffusion modeling of long videos. arXiv preprint arXiv:2205.11495(2022).Google ScholarGoogle Scholar
  33. Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626(2022).Google ScholarGoogle Scholar
  34. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017).Google ScholarGoogle Scholar
  35. Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. 2022. Imagen video: High definition video generation with diffusion models. arXiv preprint arXiv:2210.02303(2022).Google ScholarGoogle Scholar
  36. Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.Google ScholarGoogle Scholar
  37. Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans. 2022. Cascaded Diffusion Models for High Fidelity Image Generation.J. Mach. Learn. Res. 23, 47 (2022), 1–33.Google ScholarGoogle Scholar
  38. Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. 2022. Video diffusion models. arXiv preprint arXiv:2204.03458(2022).Google ScholarGoogle Scholar
  39. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (11 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 arXiv:https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  40. Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2013. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence 36, 7(2013), 1325–1339.Google ScholarGoogle Scholar
  41. Zi-Hang Jiang, Qianyi Wu, Keyu Chen, and Juyong Zhang. 2019. Disentangled representation learning for 3d face shape. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11957–11966.Google ScholarGoogle ScholarCross RefCross Ref
  42. Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias Nießner, Patrick Pérez, Christian Richardt, Michael Zollöfer, and Christian Theobalt. 2018. Deep Video Portraits. ACM Transactions on Graphics (TOG) 37, 4 (2018), 163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jihoon Kim, Jiseob Kim, and Sungjoon Choi. 2023. FLAME: free-form language-based motion synthesis & editing. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence (AAAI’23/IAAI’23/EAAI’23). AAAI Press, Article 927, 9 pages. https://doi.org/10.1609/aaai.v37i7.25996Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. 2014. Semi-supervised learning with deep generative models. In Advances in neural information processing systems. 3581–3589.Google ScholarGoogle Scholar
  45. Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In International Conference on Learning Representations. http://arxiv.org/abs/1312.6114Google ScholarGoogle Scholar
  46. Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020. Diffwave: A versatile diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761(2020).Google ScholarGoogle Scholar
  47. Buyu Li, Yongchi Zhao, Shi Zhelun, and Lu Sheng. 2022. Danceformer: Music conditioned 3d dance generation with parametric motion transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.  36. 1272–1279.Google ScholarGoogle ScholarCross RefCross Ref
  48. Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen. 2022. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479(2022), 47–59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. 2021. Ai choreographer: Music conditioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 13401–13412.Google ScholarGoogle ScholarCross RefCross Ref
  50. Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. 2017. Learning a model of facial shape and expression from 4D scans.ACM Trans. Graph. 36, 6 (2017), 194–1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B Hashimoto. 2022. Diffusion-LM Improves Controllable Text Generation. arXiv preprint arXiv:2205.14217(2022).Google ScholarGoogle Scholar
  52. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG) 34, 6 (2015), 1–16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. 2022. RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 11451–11461.Google ScholarGoogle ScholarCross RefCross Ref
  54. Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2837–2845.Google ScholarGoogle ScholarCross RefCross Ref
  55. Zhaoyang Lyu, Zhifeng Kong, Xudong Xu, Liang Pan, and Dahua Lin. 2021. A conditional point diffusion-refinement paradigm for 3d point cloud completion. arXiv preprint arXiv:2112.03530(2021).Google ScholarGoogle Scholar
  56. Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black. 2019. AMASS: Archive of motion capture as surface shapes. In Proceedings of the IEEE/CVF international conference on computer vision. 5442–5451.Google ScholarGoogle ScholarCross RefCross Ref
  57. Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784(2014).Google ScholarGoogle Scholar
  58. Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. 2017. Plug & play generative networks: Conditional iterative generation of images in latent space. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4467–4477.Google ScholarGoogle ScholarCross RefCross Ref
  59. Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning. PMLR, 8162–8171.Google ScholarGoogle Scholar
  60. Jun-Yong Noh and Douglas Fidaleo. 2000. Animated Deformations with Radial Basis Functions. In In ACM Virtual Reality and Software Technology (VRST. 166–174.Google ScholarGoogle Scholar
  61. Naima Otberdout, Mohammed Daoudi, Anis Kacem, Lahoucine Ballihi, and Stefano Berretti. 2020. Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).Google ScholarGoogle Scholar
  62. Naima Otberdout, Claudio Ferrari, Mohamed Daoudi, Stefano Berretti, and Alberto Del Bimbo. 2022. Sparse to Dense Dynamic 3D Facial Expression Generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20385–20394.Google ScholarGoogle ScholarCross RefCross Ref
  63. Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. 2022. Diffusevae: Efficient, controllable and high-fidelity generation from low-dimensional latents. arXiv preprint arXiv:2201.00308(2022).Google ScholarGoogle Scholar
  64. Mathis Petrovich, Michael J Black, and Gül Varol. 2021. Action-conditioned 3d human motion synthesis with transformer vae. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10985–10995.Google ScholarGoogle ScholarCross RefCross Ref
  65. F. Pighin, R. Szeliski, and D. H. Salesin. 1999. Resynthesizing facial animation through 3D model-based tracking. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol.  1. 143–150 vol.1. https://doi.org/10.1109/ICCV.1999.791210Google ScholarGoogle ScholarCross RefCross Ref
  66. Matthias Plappert, Christian Mandery, and Tamim Asfour. 2016. The KIT motion-language dataset. Big data 4, 4 (2016), 236–252.Google ScholarGoogle Scholar
  67. Rolandos Alexandros Potamias, Jiali Zheng, Stylianos Ploumpis, Giorgos Bouritsas, Evangelos Ververas, and Stefanos Zafeiriou. 2020. Learning to Generate Customized Dynamic 3D Facial Expressions. In Computer Vision – ECCV 2020: 16th European Conference (Glasgow, United Kingdom). Springer-Verlag, 278–294. https://doi.org/10.1007/978-3-030-58526-6_17Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. 2022. Diffusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10619–10629.Google ScholarGoogle ScholarCross RefCross Ref
  69. Albert Pumarola, Antonio Agudo, Aleix M Martinez, Alberto Sanfeliu, and Francesc Moreno-Noguer. 2018. Ganimation: Anatomically-aware facial animation from a single image. In Proc. European conference on computer vision. 818–833.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Abhinanda R Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra Quiros-Ramirez, and Michael J Black. 2021. BABEL: Bodies, action and behavior with english labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 722–731.Google ScholarGoogle ScholarCross RefCross Ref
  71. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning. PMLR, 8748–8763.Google ScholarGoogle Scholar
  72. Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125(2022).Google ScholarGoogle Scholar
  73. Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. 2018. Generating 3D faces using convolutional mesh autoencoders. In Proceedings of the European conference on computer vision (ECCV). 704–720.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In International conference on machine learning. PMLR, 1530–1538.Google ScholarGoogle Scholar
  75. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10684–10695.Google ScholarGoogle ScholarCross RefCross Ref
  76. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234–241.Google ScholarGoogle ScholarCross RefCross Ref
  77. Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings. 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. 2022. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv preprint arXiv:2205.11487(2022).Google ScholarGoogle Scholar
  79. Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. 2022. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Hyewon Seo and Guoliang Luo. 2021. Generating 3D Facial Expressions with Recurrent Neural Networks. In Intelligent Scene Modeling and Human-Computer Interaction. Springer International Publishing, 181–196. https://doi.org/10.1007/978-3-030-71002-6_11Google ScholarGoogle ScholarCross RefCross Ref
  81. Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. 2020. Interpreting the Latent Space of GANs for Semantic Face Editing. In CVPR.Google ScholarGoogle Scholar
  82. Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning. PMLR, 2256–2265.Google ScholarGoogle Scholar
  83. Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output representation using deep conditional generative models. Advances in neural information processing systems 28 (2015), 3483–3491.Google ScholarGoogle Scholar
  84. Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502(2020).Google ScholarGoogle Scholar
  85. Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456(2020).Google ScholarGoogle Scholar
  86. Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. 2022. MotionCLIP: Exposing Human Motion Generation to CLIP Space. arXiv preprint arXiv:2203.08063(2022).Google ScholarGoogle Scholar
  87. Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano. 2023. Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwuGoogle ScholarGoogle Scholar
  88. Xiaoguang Tu, Jian Zhao, Mei Xie, Zihang Jiang, Akshaya Balamurugan, Yao Luo, Yang Zhao, Lingxiao He, Zheng Ma, and Jiashi Feng. 2020. 3D face reconstruction from a single image assisted by 2D face images in the wild. IEEE Transactions on Multimedia 23 (2020), 1160–1172.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. MoCoGAN: Decomposing Motion and Content for Video Generation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1526–1535. https://doi.org/10.1109/CVPR.2018.00165Google ScholarGoogle ScholarCross RefCross Ref
  90. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.Google ScholarGoogle Scholar
  91. Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovic. 2006. Face Transfer with Multilinear Models. ACM Transactions on Graphics 24 (07 2006). https://doi.org/10.1145/1185657.1185864Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Bram Wallace, Akash Gokul, and Nikhil Naik. 2022. EDICT: Exact Diffusion Inversion via Coupled Transformations. arXiv preprint arXiv:2211.12446(2022).Google ScholarGoogle Scholar
  93. Wei Wang, Xavier Alameda-Pineda, Dan Xu, Pascal Fua, Elisa Ricci, and Nicu Sebe. 2018. Every smile is unique: Landmark-guided diverse smile generation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. 7083–7092.Google ScholarGoogle ScholarCross RefCross Ref
  94. Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. 2020. G3AN: Disentangling Appearance and Motion for Video Generation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle ScholarCross RefCross Ref
  95. Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. 2020. Imaginator: Conditional spatio-temporal gan for video generation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1160–1169.Google ScholarGoogle ScholarCross RefCross Ref
  96. Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. 2022. Diffusion-gan: Training gans with diffusion. arXiv preprint arXiv:2206.02262(2022).Google ScholarGoogle Scholar
  97. Y. Yan, Ying Huang, Si Chen, Chunhua Shen, and Hanzi Wang. 2020. Joint Deep Learning of Facial Expression Synthesis and Recognition. IEEE Transactions on Multimedia 22 (2020), 2792–2807. https://api.semanticscholar.org/CorpusID:211044056Google ScholarGoogle ScholarCross RefCross Ref
  98. Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. 2022. Diffusion probabilistic modeling for video generation. arXiv preprint arXiv:2203.09481(2022).Google ScholarGoogle Scholar
  99. Juyong Zhang, Keyu Chen, and Jianmin Zheng. 2020. Facial Expression Retargeting From Human to Avatar Made Easy. IEEE Transactions on Visualization and Computer Graphics 28 (2020), 1274–1287. https://api.semanticscholar.org/CorpusID:221103938Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. M. Zhang, Z. Cai, L. Pan, F. Hong, X. Guo, L. Yang, and Z. Liu. 5555. MotionDiffuse: Text-Driven Human Motion Generation With Diffusion Model. IEEE Transactions on Pattern Analysis & Machine Intelligence01 (jan 5555), 1–15. https://doi.org/10.1109/TPAMI.2024.3355414Google ScholarGoogle ScholarCross RefCross Ref
  101. Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan, Michael Reale, Andy Horowitz, and Peng Liu. 2013. A high-resolution spontaneous 3d dynamic facial expression database. In IEEE workshops on automatic face and gesture recognition. 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  102. Linqi Zhou, Yilun Du, and Jiajun Wu. 2021. 3d shape generation and completion through point-voxel diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5826–5835.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. 4D Facial Expression Diffusion Model

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Multimedia Computing, Communications, and Applications
            ACM Transactions on Multimedia Computing, Communications, and Applications Just Accepted
            ISSN:1551-6857
            EISSN:1551-6865
            Table of Contents

            Copyright © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Online AM: 28 March 2024
            • Accepted: 9 March 2024
            • Revised: 9 January 2024
            • Received: 30 March 2023
            Published in tomm Just Accepted

            Check for updates

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)62
            • Downloads (Last 6 weeks)62

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader