Skip to main content
Log in

TM- and TE-polarization-selective narrowband perfect absorber for near-ultraviolet light using Fano resonance in an aluminum nanohole array structure

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A wavelength- and polarization-selective absorber for near-ultraviolet light with a wavelength of 375 nm was theoretically designed and experimentally verified. Furthermore, the absorption mechanism was elucidated using electromagnetic field analysis. The absorber developed in this study employs an Al nanohole array structure, which has a double-layer, two-dimensional metal nano-periodic structure. This absorber selectively absorbs near-ultraviolet light with a wavelength of 375 nm and achieves a maximum absorptance rate of over 90% for TM polarization at the angle of incidence 10.8°. This absorptance was confirmed to be due to Fano resonance originating from the coupling between localized surface plasmon generated at the nanohole edges and propagating surface plasmon resonance along the z-axis direction. Furthermore, this absorber can selectively and completely absorb not only TM- but also TE-polarized light under conditions such as varying angle of incidence and azimuth. The perfect absorptance of TE polarization was found at the angle of incidence 14.5° and that of azimuth 45° due to the combined surface plasmon resonance of the two kinds of TM polarization. This method is expected to be applied as an intermediate optical element in near-ultraviolet light, such as optical switching, and in ultraviolet optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available because of the possibility of intellectual property rights violation; however, they are available from the corresponding author upon reasonable request.

References

  1. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Adv. Mater. 13, 1501 (2001)

    Article  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  3. C.L. Baird, D.G. Myszka, J. Mol. Recognit. 14, 261 (2001)

    Article  Google Scholar 

  4. B. Špačková, P. Wrobel, M. Bocková, J. Homola, Proc. IEEE 104, 2380 (2016)

    Article  Google Scholar 

  5. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D.N. Neshev, Y.S. Kivshar, H. Altug, Science 360, 1105 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Ishikawa, T. Tanaka, Sci. Rep. 5, 12570 (2015)

    Article  ADS  Google Scholar 

  7. K. Miwa, H. Ebihara, X. Fang, W. Kubo, Appl. Sci. 10, 2681 (2020)

    Article  Google Scholar 

  8. J.K. Tong, W.C. Hsu, Y. Huang, S.V. Boriskina, G. Chen, Sci. Rep. 5, 10661 (2015)

    Article  ADS  Google Scholar 

  9. E. Rephaeli, S. Fan, Opt. Express 17, 15145 (2009)

    Article  ADS  Google Scholar 

  10. D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, H. Ye, Mater. Des. 139, 104 (2018)

    Article  Google Scholar 

  11. K. Amemiya, H. Koshikawa, M. Imbe, T. Yamaki, H. Shitomi, J. Mater. Chem. C 7, 5418 (2019)

    Article  Google Scholar 

  12. E. Rephaeli, A. Raman, S. Fan, Nano Lett. 13, 1457 (2013)

    Article  ADS  Google Scholar 

  13. E. Rustami, K. Sasagawa, K. Sugie, Y. Ohta, M. Haruta, T. Noda, T. Tokuda, J. Ohta, IEEE Trans. Circuits Syst. I 67, 1082 (2020)

    Article  Google Scholar 

  14. K. Okamoto, K. Okura, P. Wang, S. Ryuzaki, K. Tamada, Nanophotonics 9, 34093418 (2020)

    Article  Google Scholar 

  15. C.J. Liang, K.Y. Huang, L.T. Hung, C.Y. Su, Coat. Technol. 319, 170 (2017)

    Article  Google Scholar 

  16. T. Ellenbogen, K. Seo, K.B. Crozier, Nano Lett. 12, 1026 (2012)

    Article  ADS  Google Scholar 

  17. T. Xu, Y.K. Wu, X. Luo, L.J. Guo, Nat. Commun. 1, 59 (2010)

    Article  ADS  Google Scholar 

  18. S. Yokogawa, S.P. Burgos, H.A. Atwater, Nano Lett. 12, 4349 (2012)

    Article  ADS  Google Scholar 

  19. Q. Chen, D.R.S. Cumming, Opt. Express 18, 14056 (2010)

    Article  ADS  Google Scholar 

  20. D.B. Mazulquim, K.J. Lee, J.W. Yoon, L.V. Muniz, B.-H.V. Borges, L.G. Neto, R. Magnusson, Opt. Express 22, 30843 (2014)

    Article  ADS  Google Scholar 

  21. J. Tan, Z. Wu, K. Xu, Y. Meng, G. Jin, L. Wang, Y. Wang, Plasmonics 15, 293 (2020)

    Article  Google Scholar 

  22. A. Ghobadi, H. Hajian, M.C. Soydan, B. Butun, E. Ozbay, Sci. Rep. 9, 220 (2019)

    Article  Google Scholar 

  23. W. Li, J. Valentine, Nano Lett. 14, 3510 (2014)

    Article  ADS  Google Scholar 

  24. X. Zhao, Y. Yang, Y. Wang, Y. Hao, Z. Chen, M. Zhang, Opt. Eng. 57, 117106 (2018)

    ADS  Google Scholar 

  25. J. Hennessy, A.D. Jewell, M.E. Hoenk, S. Nikzad, Appl. Opt. 54, 3507 (2015)

    Article  ADS  Google Scholar 

  26. X. Li, J. Xu, Today Commun. 24, 101108 (2020)

    Google Scholar 

  27. Y.F.C. Chau, C.T.C. Chao, S.Z.B.H. Jumat, M.R.R. Kooh, R. Thotagamuge, C.M. Lim, H.P. Chiang, Nanomaterials 11, 2097 (2021)

    Article  Google Scholar 

  28. Y.F.C. Chau, T.Y. Ming, C.T. Chou Chao, R. Thotagamuge, M.R.R. Kooh, H.J. Huang, C.M. Lim, H.P. Chiang, Sci. Rep. 11, 18515 (2021)

    Article  ADS  Google Scholar 

  29. C.T.C. Chao, Y.-F.C. Chau, A.H. Mahadi, M.R.R. Kooh, N.T.R.N. Kumara, H.-P. Chiang, Chin. J. Phys. 71, 286 (2021)

    Article  Google Scholar 

  30. C. Chou Chao, S. Chen, H.J. Huang, Y. Chou Chau, Plasmonics 18, 1581–1591 (2023)

    Article  Google Scholar 

  31. C.T.C. Chao, M.R.R. Kooh, C.M. Lim, R. Thotagamuge, A.H. Mahadi, Y.F.C. Chau, Micromachines 14, 340 (2023)

    Article  Google Scholar 

  32. N.N.R. Sabaruddin, Y.M. Tan, C. Chou Chao, M.R.R. Kooh, Y. Chou Chau, Plasmonics 19, 481 (2024)

    Article  Google Scholar 

  33. M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard, Chem. Eng. J. 300, 414 (2016)

    Article  Google Scholar 

  34. T. Hanulia, W. Inami, A. Ono, Y. Kawata, Opt. Commun. 427, 266 (2018)

    Article  ADS  Google Scholar 

  35. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, J.R. Lakowicz, Anal. Chem. 76, 4076 (2004)

    Article  Google Scholar 

  36. B. Li, F. Zhang, W. Liu, X. Chen, Y. Gao, F. Wang, X. Zhang, X. Yan, T. Cheng, Surf. Interfaces 31, 102074 (2022)

    Article  Google Scholar 

  37. Z. Xu, IEEE Comm. Mag. 46, 67 (2008)

    Google Scholar 

  38. A. Motogaito, Y. Morishita, H. Miyake, K. Hiramatsu, Plasmonics 10, 1657 (2015)

    Article  Google Scholar 

  39. A. Motogaito, T. Nakajima, H. Miyake, K. Hiramatsu, Appl. Phys. A 123, 729 (2017)

    Article  ADS  Google Scholar 

  40. A. Motogaito, R. Tanaka, K. Hiramatsu, J. Eur. Opt. Soc. 17, 6 (2021)

    Article  Google Scholar 

  41. Y. Cai, Z. Wang, S. Yan, L. Ye, J. Zhu, Opt. Mater. Express 8, 3295 (2018)

    Article  ADS  Google Scholar 

  42. H. Morisawa, A. Ono, W. Inami, Y. Kawata, Opt. Mater. Express 11, 2278 (2021)

    Article  ADS  Google Scholar 

  43. A. Motogaito, R. Tanaka, K. Hiramatsu, J. Eur. Opt. Soc. Rapid. Publ. 17, 1 (2021)

    Article  Google Scholar 

  44. A. Motogaito, A. Harada, K. Hiramatsu, Plasmonics (2023). https://doi.org/10.1007/s11468-023-02111-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants in Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS, KAKENHI, Grant Nos. 20K05359 and 23K04611), and Advanced Infrastructure for Materials and Nanotechnology in Japan by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Grant Nos. JPMXP1222NU0230 and JPMX1223NU0209), and Foundation of Public Interest of Tatematsu. We extend our gratitude to Prof. Takeshi Kato, Dr. Daiki Ohshima, and Dr. Katsufumi Ohsumi from Nagoya University for their assistance with the electron-beam lithography system and atomic force microscopy. We would also like to thank Prof. Yoshimasa Kawata and Prof. Wataru Inami from Shizuoka University for their cooperation with the UV laser. Additionally, we thank Enago (http://www.enago.jp) for their English language review.

Funding

This work was supported by Grants in Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS, KAKENHI, Grant Nos. 20K05359 and 23K04611), the Advanced Infrastructure for Materials and Nanotechnology in Japan by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Grant Nos. JPMXP1222NU0230 and JPMX1223NU0209), and the Foundation of Public Interest of Tatematsu.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of the study. The simulation program was developed by KH. The simulation was performed by KA and KH. Sample fabrication and optical characterization were performed by KA and AM. All the authors discussed the results of the simulation and experimental studies before and during the drafting of this manuscript. The first draft of the manuscript was written by KA, and all the authors commented on all versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Atsushi Motogaito.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study does not require ethical approval.

Consent to participate

This study does not require voluntary informed consent to participate in the study.

Consent to publish

This manuscript does not contain any personal information.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 442 kb)

Supplementary file2 (MP4 464 kb)

Supplementary file3 (MP4 230 kb)

Supplementary file4 (MP4 232 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akatsuka, K., Hiramatsu, K. & Motogaito, A. TM- and TE-polarization-selective narrowband perfect absorber for near-ultraviolet light using Fano resonance in an aluminum nanohole array structure. Appl. Phys. B 130, 64 (2024). https://doi.org/10.1007/s00340-024-08198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08198-w

Navigation