Skip to main content
Log in

Two-sided distributions with applications in insurance loss modeling

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

A framework of two-sided densities is presented for asymmetric continuous distributions consisting of two branches each with its own generating density. The framework supports the construction of distributions with positive support and a specified mode. Examples thereof shall be constructed using the beta and Burr Type XII distributions for their left and right branch densities. The examples are parameterized via left and right branch scale parameters, a mode parameter and two parameters determining the heaviness of its right tail. Keeping one of the tail parameters fixed, a procedure solving for their parameters is presented given a lower and upper quantile, a mode and a conditional-value-at-risk, popular in risk management of insurance losses. While valuable on its own right, that solution may be used as a starting point for a maximum likelihood routine. The estimation of the parameters is demonstrated using the classical insurance Danish fire loss data set and a French business loss interruption data set. Both data sets are publicly available. Developed models compare favorably with prior models fitted to the Danish fire loss data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The Danish fire insurance loss data set is publicly available in the “SMPracticals” package (Davison 2019) for R (R Core 2021) under the acronym “danish”. The French business interruption loss data set is publicly available in the “CASdatasets” package (Dutang and Charpentier 2020) for R (R Core Team 2021) under the acronym “frebiloss”.

Notes

  1. See, Table 2 on page 151 in Bakar et al. (2015)

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 196:716–723

    Article  MathSciNet  Google Scholar 

  • Bakar SA, Hamzah NA, Maghsoudi M, Nadarajah S (2015) Modeling loss data using composite models. Insur Math Econ 61:146–154

    Article  MathSciNet  Google Scholar 

  • Bakar SA, Nadarajah S (2021) Composite models with underlying folded distributions. J Comput Appl Math 390:113351

    Article  MathSciNet  Google Scholar 

  • Bhati D, Calderín-Ojeda E, Meenakshi M (2019) A new heavy tailed class of distributions which includes the pareto. Risks 74:99

    Article  Google Scholar 

  • Bhati D, Ravi S (2018) On generalized log-moyal distribution: a new heavy tailed size distribution. Insur Math Econ 79:247–259

    Article  MathSciNet  Google Scholar 

  • Bickel DR, Frühwirth R (2006) On a fast, robust estimator of the mode: comparisons to other robust estimators with applications. Comput Stat Data Anal 5012:3500–3530

    Article  MathSciNet  Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 132:215–232

    Article  MathSciNet  Google Scholar 

  • Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 165:1190–1208

    Article  MathSciNet  Google Scholar 

  • Calderín-Ojeda E, Kwok CF (2016) Modeling claims data with composite Stoppa models. Scand Actuar J 20169:817–836

    Article  MathSciNet  Google Scholar 

  • Cooray K, Ananda MM (2005) Modeling actuarial data with a composite lognormal-pareto model. Scand Actuar J 20055:321–334

    Article  MathSciNet  Google Scholar 

  • Davison A (2019) Smpracticals [Computer software manual]. https://CRAN.R-project.org/package=SMPracticals R package version 1.4.3

  • Dominicy Y, Sinner C (2017) Distributions and composite models for size-type data. Adv Stat Methodol Their Appl Real Probl 159

  • Dutang C, Charpentier A (2020) Casdatasets [Computer software manual]. http://dutangc.perso.math.cnrs.fr/RRepository R package version 1-0-12

  • Eling M (2012) Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? Insur Math Econ 512:239–248

    Article  MathSciNet  Google Scholar 

  • Fisk PR (1961) The graduation of income distributions. Econom J Econom Soc 29:171–185

    Google Scholar 

  • Gómez-Déniz E, Calderín-Ojeda E (2020) Financial and actuarial properties of the beta-pareto as a long-tail distribution. Span J Stat 2:7–21

    Article  Google Scholar 

  • Herrerias-Velasco JM, Herrerias-Pleguezuelo R, van Dorp JR (2009) The generalized two-sided power distribution. J Appl Stat 365:573–587

    Article  MathSciNet  Google Scholar 

  • Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 504:361–365

    Article  Google Scholar 

  • Jordanova P, Stehlík M (2020) Ipo estimation of heaviness of the distribution beyond regularly varying tails. Stoch Anal Appl 381:76–96

    Article  MathSciNet  Google Scholar 

  • Käärik M, Kadarik H (2013) Statistical inference with the limited expected value function. Multivariate statistics: theory and applications. World Scientific, Singapore, pp 99–111

    Google Scholar 

  • Klugman S, Panjer H, Willmot G (1998) Loss models. Wiley, New York, NY, USA

    Google Scholar 

  • Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer, New York

    Book  Google Scholar 

  • Kotz S, Kozubowski T, Podgorski K (2012) The laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Springer, New York

    Google Scholar 

  • Kotz S, van Dorp JR (2004) Beyond beta: other continuous families of distributions with bounded support and applications. World Scientific, Singapore

    Book  Google Scholar 

  • Lomax KS (1954) Business failures: another example of the analysis of failure data. J Am Stat Assoc 49268:847–852

    Article  Google Scholar 

  • McNeil AJ (1997) Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bull J IAA 271:117–137

    Article  Google Scholar 

  • Mead M (2015) Generalized inverse gamma distribution and its application in reliability. Commun Stat-Theory Methods 447:1426–1435

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Bakar SA (2014) New composite models for the Danish fire insurance data. Scand Actuar J 20142:180–187

    Article  MathSciNet  Google Scholar 

  • Poncet P (2019) modeest [Computer software manual]. https://cran.r-project.org/web/packages/modeest/index.html R package version 2.4.0

  • R Core Team (2021) R: a language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org/

  • Resnick SI (1997) Discussion of the Danish data on large fire insurance losses. ASTIN Bull J IAA 271:139–151

    Article  Google Scholar 

  • Rubio FJ, Steel MF (2020) The family of two-piece distributions. The family of two-piece distributions. Wiley, New Jersey

    Google Scholar 

  • Scollnik DP (2007) On composite lognormal-pareto models. Scand Actuar J 20071:20–33

    Article  MathSciNet  Google Scholar 

  • Scollnik DP, Sun C (2012) Modeling with weibull-pareto models. N Am Actuar J 162:260–272

    Article  MathSciNet  Google Scholar 

  • Teodorescu S, Vernic R (2009) Some composite exponential-pareto models for actuarial prediction. Romanian J Econ Forecast 124:82–100

    Google Scholar 

  • van Dorp JR, Shittu E (2023) The generalized two-sided beta distribution with applications in project risk analysis. J Stat Theory Pract 173:38

    Article  MathSciNet  Google Scholar 

  • Wallis KF (2014) The two-piece normal, binormal, or double gaussian distribution: its origin and rediscoveries. Stat Sci 29:106–112

    Article  MathSciNet  Google Scholar 

  • Wong TS, Li WK (2021) A new test for tail index with application to Danish fire loss data. J Stat Comput Simul 9118:3880–3893

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers and the co-editor whose comments significantly improved the prior version of this article.

Funding

The authors have not received any funding for the research in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan René van Dorp.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Burr Type XII distribution

Let \(X\sim Burr(n,\tau ,\nu )\) (Burr 1942) with pdf

$$\begin{aligned} f_X(x\vert n,\tau ,\nu )=\frac{\nu \tau }{n}\frac{(y/n)^{\tau -1}}{[1+(y/n)^\tau ]^{ \nu +1}},\nu ,\tau>0,n>0. \end{aligned}$$
(A1)

From (A1) one obtains the cdf

$$\begin{aligned} F_X(x\vert n,\tau ,\nu )=1- \left[ \frac{1}{1+(y/n)^\tau } \right] ^\nu , \end{aligned}$$
(A2)

and from (A2) the quantile function

$$\begin{aligned} F^{-1}_X(p\vert n,\tau ,\nu )=n \left[ (1-p)^{-1/\nu }-1 \right] ^{1/\tau }. \end{aligned}$$
(A3)

After som algebraic manipulations, one derives with (A1) that

$$\begin{aligned} E [X^k\vert n,\tau ,\nu ]=\frac{kn^k}{\tau }\mathbb {B}(k/\tau ,\nu -k/\tau ),\, \text {provided }\nu >k/\tau . \end{aligned}$$
(A4)

Finally, from (A1) one obtains

$$\begin{aligned} CVaR_p[X]=E \left[ X\vert X>x_p \right] =x_p+\frac{n}{\tau }\frac{\mathbb {B}(\nu -1/\tau ,1/ \tau )}{1-p}I_{(1-p)^{1/\nu }}(\nu -1/\tau ,1/\tau ), \end{aligned}$$
(A5)

where \(x_p\) is given by (A3). Thus \(CVaR_p[X]\) (A5) is finite for \(\nu >1/\tau\) and infinite otherwise.

Appendix B: The generalized log-Moyal distribution

Let \(X\sim GlogM(\theta ,\nu )\), i.e. generalized log-Moyal distributed (Bhati and Ravi 2018), with pdf

$$\begin{aligned} f_X(x\vert \theta ,\nu )=\frac{1}{\sqrt{2\pi }}\frac{1}{\sigma x}(\theta /x)^\nu exp \left[ -\frac{1}{2} \left\{ (\theta /x)^\nu \right\} ^2 \right] . \end{aligned}$$
(B6)

One obtains from (B6) the cdf

$$\begin{aligned} F_X(x\vert \theta ,\nu )=2\times \left\{ 1-\Phi \left[ (\theta /x)^\nu \right] \right\} , \end{aligned}$$
(B7)

where \(\Phi (\cdot )\) is the standard normal cdf. From (B7) one derives the quantile function

$$\begin{aligned} F_X^{-1}(p\vert \theta ,\nu )=\theta \left[ \Phi ^{-1} \left( 1-\frac{p}{2} \right) \,\right] ^{-1/\nu }. \end{aligned}$$
(B8)

After some algebraic manipulations, one obtains with (B6) for the raw moments

$$\begin{aligned} E[X^k\vert \theta ,\nu ]=\frac{\theta ^k\Gamma \left[ \frac{1}{2} \left( 1-\frac{k}{\nu } \right) \right] }{\sqrt{ \pi 2^{k/\nu }}}, \end{aligned}$$
(B9)

which are finite for \(\nu >k\) and infinite otherwise. Finally, from (B6) one derives

$$\begin{aligned} CVaR_p(X)=\frac{1}{1-p}\frac{\theta \Gamma \left[ \frac{1}{2} \left( 1-\frac{1}{\nu } \right) \right] }{ \sqrt{\pi 2^{1/\nu }}}F_V\left\{ \frac{1}{2} \left[ \Phi ^{-1} \left( 1-\frac{p}{2} \right) \, \right] ^2 \left| \frac{1}{2} \left( 1-\frac{1}{\nu } \right) ,1 \right. \right\} , \end{aligned}$$
(B10)

where \(V\sim Gamma(\alpha ,\beta )\), \(\alpha =\frac{1}{2}(1-\frac{1}{\nu })\), \(\beta =1\) with pdf

$$\begin{aligned} f_V(v\vert \alpha ,\beta )=\frac{\beta ^\alpha }{\Gamma (\alpha )}v^{\alpha -1}exp(-\beta v). \end{aligned}$$
(B11)

Thus, \(CVaR_p(X)\) (B10) is finite for \(\nu >1\) and infinite otherwise.

Appendix C: The generalized inverse gamma distribution

Let \(X\sim Gamma(n,\theta )\) with pdf (B11). Let \(Y=X^{-1/\nu }\). From (B11) one obtains the pdf

$$\begin{aligned} f_Y(y\vert n,\theta ,\nu )=\frac{\nu \theta ^n}{\Gamma (n)}y^{-\nu n-1}e^{-\theta y^{-\nu }}. \end{aligned}$$
(C12)

The pdf (C12) of the rv Y is generalized inverse gamma \(GIG(n,\theta ,\nu )\) (Mead 2015). For the cdf one derives

$$\begin{aligned} Pr(Y\le y)=1-Pr(X\le y^{-\nu })=1-F_X(y^{-\nu }\vert n,\theta ), \end{aligned}$$
(C13)

and from (C13) the quantile function

$$\begin{aligned} F^{-1}_Y(p\vert n,\theta ,\nu )= \left[ F_X^{-1}(1-p\vert n,\theta ) \right] ^{-1/\nu }. \end{aligned}$$
(C14)

The raw moments for Y follow directly from the raw moments of \(X\sim Gamma(n,\theta )\) as

$$\begin{aligned} E \left[ Y^k\vert \theta ,n \right] =E \left[ X^{-k/\nu }\vert \theta ,n \right] =\frac{\theta ^{k/\nu }\Gamma (n-k/\nu )}{\Gamma (n)}. \end{aligned}$$
(C15)

Hence, raw moments (C17) exist for \(\nu > k/n\) and are infinite otherwise. To derive \(CVaR_p(Y)=E[Y\vert Y>y_p]\) one sets with (C12)

$$\begin{aligned} \begin{aligned} \int _{y_p}^\infty uf_Y(u\vert n,\theta ,\nu )du&=\int _{y_p}^\infty \frac{\nu \theta ^n}{\Gamma (n)}(u^{-\nu })^ne^{-\theta u^{-\nu }}du =\int _0^{y^{-\nu }_p}\frac{\theta ^n}{\Gamma (n)}v^{n-1/\nu -1}e^{-\theta v}dv \\&=\theta ^{1/\nu }\frac{\Gamma (n-1/\nu )}{\Gamma (n)}F_W \left[ F_X^{-1} \left( 1-p\vert n,\theta \right) \vert n-1/\nu ,\theta \right] . \end{aligned} \end{aligned}$$
(C16)

where in (C16), \(W\sim Gamma(n-1/\nu ,\theta )\), \(X\sim G(n,\theta )\). Finally, from (C16)

$$\begin{aligned} CVaR_p(Y)=\frac{\theta ^{1/\nu }}{1-p}\frac{\Gamma (n-1/\nu )}{ \Gamma (n)}F_W \left[ F_X^{-1} \left( 1-p\vert n,\theta \right) \vert n-1/\nu ,\theta \right] . \end{aligned}$$
(C17)

Thus, \(CVaR_p(Y)\) (C17) is finite for \(\nu >1/n\) and infinite otherwise.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorp, J.R.v., Shittu, E. Two-sided distributions with applications in insurance loss modeling. Stat Methods Appl (2024). https://doi.org/10.1007/s10260-024-00749-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10260-024-00749-x

Keywords

Mathematics Subject Classification

JELClassification

Navigation