Skip to main content
Log in

Novel Chitosan Beeswax Matrix for Gastro-Retentive Delivery of Curcumin: A Promising Adjuvant Therapy for Helicobacter Infection

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The main purpose of this study is to introduce a new adjuvant treatment for H. pylori that aims to enhance therapy outcomes. The research question is how to create a controlled-release gastro-retentive floating system using a combination of chitosan (CS) and beeswax (BW) and to evaluate the release behavior of curcumin as an active ingredient.

Methods

In this study, a new formula combining CS and BW was developed through a hot melting process to create a controlled-release gastro-retentive floating system. Response surface methodology (RSM) was employed to determine the optimal conditions and concentrations of CS and BW to produce the desired floating system. Parameters such as mixing time, processing melting temperature, and concentration of BW were evaluated.

Results

The study found that the optimal parameters for the CS/BW formulation were determined as follows: a mixing time of 3 min, a processing melting temperature of 92.2 °C, and a BW concentration of 13.3% (w/w). Curcumin was incorporated into the optimal tablet, and its release behavior was evaluated. The results showed a full floating behavior of the tablet and a zero-order release behavior in acidic conditions.

Conclusions

The study successfully introduced a new adjuvant treatment for H. pylori that utilizes a controlled-release gastro-retentive floating system. The combination of CS and BW, along with the incorporation of curcumin, showed promising results in terms of floating behavior and release kinetics. This new treatment approach has the potential to enhance therapy outcomes for H. pylori infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available from the corresponding author upon reasonable request.

References

  1. Abbas A, Alhamdany A. Floating microspheres of enalapril maleate as a developed controlled release dosage form: investigation of the effect of an ionotropic gelation technique. Turkish J Pharm Sci. 2020;17(2):159.

    Article  CAS  Google Scholar 

  2. Henriques P, Costa L, Seabra C, Antunes B, Silva-Carvalho R, Junqueira-Neto S, et al. Orally administrated CS microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomaterialia. 2020;114:206–20.

    Article  CAS  PubMed  Google Scholar 

  3. Graham D, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut. 2010;59(8):1143–53.

    Article  CAS  PubMed  Google Scholar 

  4. Song H, Zhou L, Liu D, Ge L, Li Y. Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells. Exp Ther Med. 2019;18(3):1551–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Georgopoulos S, Papastergiou V. An update on current and advancing pharmacotherapy options for the treatment of H. pylori infection. Expert Opin Pharmacother. 2021;22(6):729–41.

  6. Bardonnet P, Faivre V, Pugh W, Piffaretti J, Falson F. Gastroretentive dosage forms: overview and special case of Helicobacter pylori. J Control Release. 2006;111(1–2):1–18.

    Article  CAS  PubMed  Google Scholar 

  7. Yun Y, Lee B, Park K. Controlled drug delivery: historical perspective for the next generation. J Control Release. 2015;219:2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunoqrot S, Hasan L, Alsadi A, Hamed R, Tarawneh O. Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: implications for gastro-retentive drug delivery. Colloids Surf B. 2017;156:1–8.

    Article  CAS  Google Scholar 

  9. Ouda G, Dahmash E, Alyami H, Iyire A. A novel technique to improve drug loading capacity of fast/extended release orally dissolving films with potential for paediatric and geriatric drug delivery. AAPS PharmSciTech. 2020;21(4):1–14.

    Article  Google Scholar 

  10. Omachi Y. Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®. AAPS PharmSciTech. 2022;23(5):1–22.

    Article  Google Scholar 

  11. Sousa A, Serra J, Estevens C, Costa R, Ribeiro A. A quality by design approach in oral extended release drug delivery systems: where we are and where we are going? J Pharm Investig. 2022;1–38.

  12. Vinchurkar K, Sainy J, Khan M, Mane S, Mishra D, Dixit P. Features and Facts of a Gastroretentive Drug Delivery System-A Review. Turk J Pharm Sci. 2022;19(4).

  13. Palla S, Kotha R, Paladugu A, Reddy E, Adavi S, Reddy K. Bilayer Floating Tablets for Gastroretentive Drug Delivery System. Int J Pharm Sci. 2013;6(3):2097–112.

    CAS  Google Scholar 

  14. Varshi R, Jain V, Pal P. A review on Advanced approaches and polymers used in gastroretentive drug delivery systems. J drug deliv ther. 2022;12(4):181–5.

    Article  CAS  Google Scholar 

  15. Panigrahi K, Patra C, Jena G, Ghose D, Jena J, Panda S, Sahu M. Gelucire: a versatile polymer for modified release drug delivery system. Future J Pharm Sci. 2018;4(1):102–8.

    Article  Google Scholar 

  16. Iglesias N, Galbis E, Romero-Azogil L, Benito E, Lucas R, García-Martín M, de-Paz M. In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics. 2020;12(7):636.

  17. Wang L, Shang L, Shan D, Che X. Long-term floating control-released intravesical preparation of 5-fluorouracil for the local treatment of bladder cancer. Drug Dev Ind Pharm. 2017;43(8):1343–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sapavatu S, Jadi R. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int J Appl Pharm. 2019;11:91–9.

    Article  CAS  Google Scholar 

  19. Janjale V, Patil S, Fegade T. A Review on: floating Microsphere. Am J Pharm Educ. 2020;10(02):232–59.

    CAS  Google Scholar 

  20. Fratini F, Cilia G, Turchi B, Felicioli A. BW: a minireview of its antimicrobial activity and its application in medicine. Asian Pac J Trop Med. 2016;9(9):839–43.

    Article  CAS  PubMed  Google Scholar 

  21. Carbajal D, Molina V, Valdés S, Arruzazabala L, Más R. Anti-ulcer activity of higher primary alcohols of BW. J Pharm Pharmacol. 1995;47(9):731–3.

    Article  CAS  PubMed  Google Scholar 

  22. Dinat S, Orchard A, Van Vuuren S. A systematic review of African natural products against gastric ulcers and Helicobacter pylori. J Ethnopharmacol. 2022;115698.

  23. Alsamydai A, Jaber N. Pharmacological aspects of curcumin. Int J Pharm. 2018;5(6):313–26.

    CAS  Google Scholar 

  24. Hamam F, Al-Remawi M. The novel delivery system of curcumin through a transdermal route using sub-micronized particles composed of mesoporous silica and oleic acid. J Funct Foods. 2014;8:87–99.

    Article  CAS  Google Scholar 

  25. Alam J, Dilnawaz F, Sahoo S, Singh D, Mukhopadhyay A, Hussain T, Pati S. Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter Pylori effect. Asian Pac J Cancer Prev. 2022;23(1):61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh S, Johnston T, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog. 2022;105552.

  27. Gupta S, Patchva S, Aggarwal B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

    Article  CAS  PubMed  Google Scholar 

  28. Al-Remawi M. Quality by design of curcumin-loaded calcium alginate emulsion beads as an oral controlled release delivery system. J Excip Food Chem. 2016;6(2)

  29. Siva Gangi Reddy N, Madhusudana Rao K, Park S, Kim T, Chung I. Fabrication of aminosilanized halloysite based floating biopolymer composites for sustained gastro retentive release of curcumin. Macromol Res. 2019;27(5):490–6.

  30. Al-Remawi M, Abdullah M. Controlled release pharmaceutical composition. European patent publication number (EP2716282); 2014.

  31. Al-Remawi M, Hamam F, Hamaidi M. Quality by design approach to prepare oleoyl alginate derivative and its use in transdermal delivery. Pharm Dev Technol. 2015;20(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Akayleh F, Jaber N, Al-Remawi M. Designing, preparation, and evaluation of orodispersible chitosan anionic salt tablets. J Pharm Innov. 2020;1–13.

  33. Jaimini M, Rana A, Tanwar Y. Formulation and evaluation of famotidine floating tablets. Curr Drug Deliv. 2007;4(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  34. Khan I, Lau K, Bnyan R, Houacine C, Roberts M, Isreb A, et al. A facile and novel approach to manufacture paclitaxel-loaded proliposome tablet formulations of micro or nano vesicles for nebulization. Pharm Res. 2020;37(6):1–19.

    Article  Google Scholar 

  35. Al-Remawi M. Application of N-hexoyl CS derivatives with high degree of substitution in the preparation of super-disintegrating pharmaceutical matrices. J Drug Deliv Sci. 2015;29:31–41.

    CAS  Google Scholar 

  36. Pitt K, Sinka C. Tabletting. In Handbook of powder technology (Vol. 11, pp. 735–778). Elsevier Science BV; 2017.

  37. Al-Akayleh F, Jaber N, Al-Remawi M, Al Odwan G, Qinna N. CS-biotin topical film: preparation and evaluation of burn wound healing activity. Pharm Dev Technol. 2022;27(4):479–89.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Remawi M, Jaber N, Elsayed A, Alsafadi D, Salah K. Stabilization of insulin using low molecular weight CS carbonate nanocarrier. Carbohydr Polym. 2022;291:119579.

    Article  CAS  PubMed  Google Scholar 

  39. Pontier C, Champion E, Viana M, Chulia D, Bernache-Assollant D. Use of cycles of compression to characterize the behaviour of apatitic phosphate powders. J Eur Ceram. 2002;22(8):1205–16.

    Article  CAS  Google Scholar 

  40. Rachmawati H, Yee C, Rahma A. Formulation of tablet containing curcumin nanoemulsion. Int J Pharm Pharm Sci. 2014;6(3):115–6.

    CAS  Google Scholar 

  41. Hazra K, Kumar R, Sarkar B, Chowdary Y, Devgan M, Ramaiah M. UV-visible spectrophotometric estimation of curcumin in nanoformulation. Int J Pharmacogn. 2015;2:127–30.

    CAS  Google Scholar 

  42. Svečnjak L, Baranović G, Vinceković M, Prđun S, Bubalo D, Gajger I. An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J Apic Sci. 2015;59(2):37–49.

    Google Scholar 

  43. Tinto W, Elufioye T, Roach J. Waxes. In Pharmacognosy (pp. 443–455). Academic Press; 2017.

  44. Diyana Z, Jumaidin R, Selamat M, Suan M. Thermoplastic starch/BW blend: characterization on thermal mechanical and moisture absorption properties. Int J Biol Macromol. 2021;190:224–32.

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez-Núñez JR, Madera-Santana TJ, Sánchez-Machado DI, López-Cervantes J, Soto Valdez H. Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J Polym Environ. 2014;22:41–51.

    Article  Google Scholar 

  46. Bakry N, Isa M, Sarbon N. Effect of sorbitol at different concentrations on the functional properties of gelatin/carboxymethyl cellulose (CMC)/CS composite films. Int Food Res J. 2017;24(4):1753–62.

    CAS  Google Scholar 

  47. Amberkar T, Mahanwar P. Study of BW–Carbon Nanotubes-Paperboard Nanocomposite for Temperature Regulation of Packaging Container. Mater Proc. 2022;9(1):9.

    Google Scholar 

  48. Huang Y, Huang Z, Watanabe C, Wang L. Combined direct analysis in real-time mass spectrometry (DART-MS) with analytical pyrolysis for characterization of Chinese crude propolis. J Anal Appl Pyrolysis. 2019;137:227–36.

    Article  CAS  Google Scholar 

  49. Li Y, Qia J, Wang Z, Qu L, Gao J, Yi S, He Z. Effect of beeswax impregnation on the dimensional stability, surface properties, and thermal characteristics of wood. BioResources. 2020;15(2):2181–94.

    Article  CAS  Google Scholar 

  50. Luckachan G, Pillai C. Chitosan/oligo L-lactide graft copolymers: effect of hydrophobic side chains on the physico-chemical properties and biodegradability. Carbohydr Polym. 2006;64(2):254–66.

    Article  CAS  Google Scholar 

  51. Baskar D, Kumar T. Effect of deacetylation time on the preparation, properties, and swelling behavior of chitosan films. Carbohydr Polym. 2009;78(4):767–72.

    Article  CAS  Google Scholar 

  52. Hossain M, Rahman M, Ketata C, Mann H, Islam M. SEM-based structural and chemical analysis of paraffin wax andbeeswax for petroleum applications. J Charact Dev Nov Mater. 2009;1:21–38.

    Google Scholar 

  53. Jozwiakowski M, Jones D, Franz R. Characterization of a hot-melt fluid bed coating process for fine granules. Pharm Res. 1990;7:1119–26.

    Article  CAS  PubMed  Google Scholar 

  54. Patel S, Kaushal A, Bansal A. The effect of starch paste and sodium starch glycolate on the compaction behavior of wet granulated acetaminophen formulations. J Excip Food Chem. 2016;2(3).

  55. Bakre LG, Ladele BA. Development and evaluation of gastroretentive ciprofloxacin floating tablets using Chrysophyllum albidum gum. J Pharm Pract Res. 2019;49(3):240–5.

    Article  Google Scholar 

  56. Rahim SA, Carter PA, Elkordy AA. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug. Drug Des Devel Ther. 2015;31:1843–57.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the Deanship of Scientific Research at University of Petra for funding this research.

Funding

The study was funded by a grant (4-2022) of the Deanship of Scientific Research from University of Petra (UOP), Amman, Jordan.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: Al Remawi M: Study conception, design, and manuscript preparation. Jaber N and Abdel-Rahem R.: data collection, analysis and interpretation of results.

Corresponding author

Correspondence to Mayyas Al-Remawi.

Ethics declarations

Ethics Approval

NA.

Consent

NA.

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, N., Al-Remawi, M. & Abdel-Rahem, R. Novel Chitosan Beeswax Matrix for Gastro-Retentive Delivery of Curcumin: A Promising Adjuvant Therapy for Helicobacter Infection. J Pharm Innov 19, 16 (2024). https://doi.org/10.1007/s12247-024-09824-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09824-y

Keywords

Navigation