Skip to main content

Advertisement

Log in

All-biomass-based strong nanocomposite fibers of agar and cellulose nanocrystals and their dye removal applications

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Fiber-based commodities represent a substantial fraction of plastic waste, leading to environmental harm. Discarded sanitary masks and fishing equipment undergo degradation, generating microfiber plastics, thereby presenting a notable hazard to both human health and the ecosystem. In this study, mechanically strong and environmentally friendly nanocomposite fibers were prepared by dry-jet wet spinning. The all-biomass-based fibers comprised agar and cellulose nanocrystals (CNC) as the matrix and nanofiller, respectively, and were highly miscible in deionized water as a cosolvent. Based on rheological characterization, the optimal spinning concentration and temperature were set to 13% (w/v) and 95 °C, respectively. The dry-jet wet-spun agar-based fibers exhibited remarkable mechanical performance compared with previously reported agar-based materials. In particular, the 1 wt% CNC (with respect to the agar amount) simultaneously improved the Young’s modulus, strength, and toughness by 8.3, 4.8, and 16.4% (2.6 GPa, 93.5 MPa, and 7.8 MJ m−3), respectively, compared to those of the control agar fibers (2.4 GPa, 89.2 MPa, and 6.7 MJ m−3), overcoming the trade-off of stiffness-toughness for conventional nanocomposite systems. In addition, the agar/CNC nanocomposite fibers rapidly adsorbed Methylene blue within 90 min, which is significantly faster than that of the film-type agar adsorbent. Therefore, all-biomass-based agar/CNC fibers are a promising remedy for alleviating water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Cho WS, Lee JH, Choi SS (2023) Effect of waste PET blending on the physical and chemical characteristics of activated carbons. Macromol Res 31:1021–1027

    Article  CAS  Google Scholar 

  2. Nadeem H, Dehghani M, Miri S, Pazirofteh M, Garnier G, Batchelor W (2023) Highly hydrophobic and moisture barrier nanocellulose based films produced via spray deposition. Cellulose 30:5157–5170

    Article  CAS  Google Scholar 

  3. de Sousa Junior RR, Dos Santos CAS, Ito NM, Suqueira AN, Lackner M, Dos Santos DJ (2022) PHB processability and property improvement with linear-chain polyester oligomers used as plasticizers. Polymers 14:4197

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Wei C, Jiang Y, Cheng R, Zhang Y, Ning C, Dong K, Wang ZL (2022) Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications. Adv Fiber Mater 4:1584–1594

    Article  Google Scholar 

  5. Hu T, Shen M, Tang W (2022) Wet wipes and disposable surgical masks are becoming new sources of fiber microplastic pollution during global COVID-19. Environ Sci Pollut Res 29:284–292

    Article  CAS  Google Scholar 

  6. Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H (2023) Towards environmentally sustainable management: a review on the generation, degradation, and recycling of polypropylene face mask waste. J Hazard Mater 461:132566

    Article  PubMed  Google Scholar 

  7. Kozioł A, Paso KG, Kuciel S (2022) Properties and recyclability of abandoned fishing net-based plastic debris. Catalysts 12:948

    Article  Google Scholar 

  8. Tebyetekerwa M, Xu Z, Yang S, Ramakrishna S (2020) Electrospun nanofibers - based face masks. Adv Fiber Mater 2:161

    Article  CAS  PubMed Central  Google Scholar 

  9. Jonsirivilai B, Torgbo S, Sukyai P (2022) Multifunctional filter membrane for face mask using bacterial cellulose for highly efficient particulate matter removal. Cellulose 29:6205–6218

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Kim YT, Oh LS, Kim HJ, Lee J (2022) Marine waste upcycling—recovery of nylon monomers from fishing net waste using seashell waste-derived catalysts in a CO 2-mediated thermocatalytic process. J Mater Chem A 10:20024–20034

    Article  CAS  Google Scholar 

  11. Buss N, Sander B, Hua J (2022) Effects of polyester microplastic fiber contamination on amphibian–trematode interactions. Environ Toxicol Chem 41:869–879

    Article  CAS  PubMed  Google Scholar 

  12. Cebrián-Lloret V, Martínez-Abad A, López-Rubio A, Martínez-Sanz M (2024) Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocoll 146:109177

    Article  Google Scholar 

  13. Wan Y, Liu H, Yan K, Li X, Lu Z, Wang D (2023) An ionic/thermal-responsive agar/alginate wet-spun microfiber-shaped hydrogel combined with grooved/wrinkled surface patterns and multi-functions. Carbohydr Polym 304:120501

    Article  CAS  PubMed  Google Scholar 

  14. Athamneh T, Hajnal A, Al-Najjar MA, Alshweiat A, Obeidat R, Awad AA, Al-Alwany R, Keitel J, Wu D, Kieserling H, Rohn S, Keil C, Gurikov P (2023) In vivo tests of a novel wound dressing based on agar aerogel. Int J Biol Macromol 239:124238

    Article  CAS  PubMed  Google Scholar 

  15. Sarmah D, Borah M, Mandal M, Karak N (2023) Swelling induced mechanically tough starch–agar based hydrogel as a control release drug vehicle for wound dressing applications. J Mater Chem B 11:2927–2936

    Article  CAS  PubMed  Google Scholar 

  16. Bao X, Hayashi K, Li Y, Teramoto A, Abe K (2010) Novel agarose and agar fibers: Fabrication and characterization. Mater Lett 64:2435–2437

    Article  CAS  Google Scholar 

  17. Song J, Kim H, Lee SH, Lee O, Kim HJ, Jeong Y, Chae HG, Koo J, Yu S, Eom Y (2023) Rheology-tailored stable aramid nanofiber suspensions for fabricating ultra-strong and electrically insulated additive-free nanopapers. Chem Eng J 475:146394

    Article  CAS  Google Scholar 

  18. Chiu YC, Vo TH, Sheng YJ, Tsao HK (2022) Spontaneous formation of microgels for a 3D printing supporting medium. ACS Appl Polym Mater 5:764–774

    Article  Google Scholar 

  19. Kim HJ, Jeong JH, Choi YH, Eom Y (2021) Review on cellulose nanocrystal-reinforced polymer nanocomposites: processing, properties, and rheology. Korea Aust Rheol J 33:165–185

    Article  Google Scholar 

  20. Kassa HS, Jabasingh SA, Mohammed SA, Baek SY, Park SY (2022) Extraction and characterization of cellulose nanocrystals from anchote (Coccinia Abyssinica) Bagasse. Macromol Res 30:776–782

    Article  CAS  Google Scholar 

  21. Lee Y, Zhang H, Yu HY, Tam KC (2022) Electroconductive cellulose nanocrystals—Synthesis, properties and applications: a review. Carbohydr Polym 289:119419

    Article  CAS  PubMed  Google Scholar 

  22. Kim HJ, Choi YH, Jeong JH, Kim H, Yang HS, Hwang SY, Koo JM, Eom Y (2021) Rheological percolation of cellulose nanocrystals in biodegradable poly (butylene succinate) nanocomposites: a novel approach for tailoring the mechanical and hydrolytic properties. Macromol Res 29:720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hassan AF, Alshandoudi LM, Awad AM, Mustafa AA, Esmail G (2023) Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo-Fenton degradation of Safranin-O: kinetic and thermodynamic studies. Macromol Res 31:677–697

    Article  CAS  Google Scholar 

  24. Shin YE, Lee JE, Park Y, Hwang SH, Chae HG, Ko H (2018) Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. J Mater Chem A 6:22879–22888

    Article  CAS  Google Scholar 

  25. Eom Y, Ju H, Kim BC, Chae HG (2019) Enthalpic effect of polyacrylonitrile on the concentrated solutions in dimethyl sulfoxide: strong thixotropic behavior and formation of bound solvents. J Polym Sci Part B Polym Phys 57:1080–1089

    Article  CAS  Google Scholar 

  26. Son SM, Lee JE, Jeon J, Lim SI, Kwon HT, Eom Y, Chae HG (2021) Preparation of high-performance polyethersulfone/cellulose nanocrystal nanocomposite fibers via dry-jet wet spinning. Macromol Res 29:33–39

    Article  CAS  Google Scholar 

  27. Song J, Choi YH, Kim HJ, Kim H, Eom Y (2023) Control of reinforcing efficiency in thermoplastic polyurethane/aramid nanofiber nanocomposites: rheological and two-dimensional correlation spectroscopic approaches. Eur Polym J 193:112106

    Article  CAS  Google Scholar 

  28. Kim H, Kim HJ, Lee Y, Kim JK, Eom Y (2023) Rheological characterization of cellulose nanocrystal-laden self-healable polyvinyl alcohol hydrogels. Korea Aust Rheol J 35:31–38

    Article  Google Scholar 

  29. Seo SB, Lee JE, Ju H, Kim HJ, Eom Y, Chae HG (2022) Mild acid-based surfactant-free solutions of single-walled carbon nanotubes: Highly viscous, less toxic, and humidity-insensitive solutions. Chem Eng J 450:137983

    Article  Google Scholar 

  30. Xiang C, Behabtu N, Liu Y, Chae HG, Young CC, Genorio B, Tsentalovich DE, Zhang C, Kosynkin DV, Lomeda JR, Hwang CC, Kumar S, Pasquali M, Tour JM (2013) Graphene nanoribbons as an advanced precursor for making carbon fiber. ACS Nano 7:1628–1637

    Article  CAS  PubMed  Google Scholar 

  31. Newcomb BA, Gulgunje PV, Gupta K, Kamath MG, Liu Y, Giannuzzi LA, Chae HG, Kumar S (2015) Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym Eng Sci 55:2603–2614

    Article  CAS  Google Scholar 

  32. Kanmani P, Rhim JW (2014) Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr Polym 102:708–716

    Article  CAS  PubMed  Google Scholar 

  33. Sharma K, Kumar V, Swart-Pistor C, Chaudhary B, Swart HC (2017) Synthesis, characterization, and anti-microbial activity of superabsorbents based on agar–poly (methacrylic acid-glycine). J Bioact Compat Polym 32:74–91

    Article  CAS  Google Scholar 

  34. Lee JH, Park SH, Kim SH (2020) Surface alkylation of cellulose nanocrystals to enhance their compatibility with polylactide. Polymers 12:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng H, Chen Q, Xie F, Zhao C, Pan J, Cheng Q, Zhang C (2023) Castor oil-based waterborne polyurethane/tunicate cellulose nanocrystals nanocomposites for wearable strain sensors. Carbohydr Polym 302:120313

    Article  CAS  PubMed  Google Scholar 

  36. Tao R, Shi J, Granier F, Moeini M, Akbarzadeh A, Therriault D (2022) Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications. Appl Mater Today 29:101596

    Article  Google Scholar 

  37. Chang XX, Mubarak NM, Karri RR, Tan YH, Khalid M, Dehghani MH, Tyagi I, Khan NA (2023) Insights into chitosan-based cellulose nanowhiskers reinforced nanocomposite material via deep eutectic solvent in green chemistry. Environ Res 219:115089

    Article  CAS  PubMed  Google Scholar 

  38. Park SA, Eom Y, Jeon H, Koo JM, Lee ES, Jegal J, Hwang SY, Oh DX, Park J (2019) Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chem 21:5212–5221

    Article  CAS  Google Scholar 

  39. Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199

    Article  CAS  PubMed  Google Scholar 

  40. Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488

    Article  CAS  PubMed  Google Scholar 

  41. Atef M, Rezaei M, Behrooz R (2014) Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int J Biol Macromol 70:537–544

    Article  CAS  PubMed  Google Scholar 

  42. Rhim JW, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22:407–420

    Article  CAS  Google Scholar 

  43. Huang S, Xiong Y, Zou Y, Dong Q, Ding F, Liu X, Li H (2019) A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocoll 90:198–205

    Article  CAS  Google Scholar 

  44. Davidović S, Lazić V, Miljković M, Gordić M, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković JM (2019) Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. Carbohydr Polym 224:115187

    Article  PubMed  Google Scholar 

  45. Roy S, Rhim JW, Jaiswal L (2019) Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll 93:156–166

    Article  CAS  Google Scholar 

  46. de Araujo CMB, Ghislandi MG, Rios AG, da Costa GRB (2022) Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Colloids Surfaces A 639:128357

    Article  Google Scholar 

  47. Betraoui A, Seddiki N, Souag R, Guerfi N, Semlali A, Aouak T, Aliouche D (2023) Synthesis of new hydrogels involving acrylic acid and acrylamide grafted agar-agar and their application in the removal of cationic dyes from wastewater. Gels 9:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nguyen TT, Hoang BN, Van Tran T, Van Nguyen D, Nguyen TD, Vo DVN (2021) Agar/maltodextrin/poly (vinyl alcohol) walled montmorillonite composites for removal of methylene blue from aqueous solutions. Surf Interfaces 26:101410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pukyong National University Industry-university Cooperation Research Fund in 202311990001 and National Research Foundation of Korea (2020R1C1C1009340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Eom.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1004 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Kim, H.J., Kim, M.W. et al. All-biomass-based strong nanocomposite fibers of agar and cellulose nanocrystals and their dye removal applications. Korea-Aust. Rheol. J. (2024). https://doi.org/10.1007/s13367-024-00089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13367-024-00089-y

Keywords

Navigation