Skip to main content

Advertisement

Log in

Investigating the correlation between prominent viruses and hematological malignancies: a literature review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Extensive research has been conducted on the correlation between viral infections and hematological cancers ever since the identification of the Rous Sarcoma Virus as a cancer-causing agent. Numerous viruses, such as the Epstein-Barr virus, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, human T-lymphotropic virus 1, and severe acute respiratory syndrome-related coronavirus 2, have been identified as potential contributors to the development and progression of cancer by disrupting normal cellular processes. Different viruses are associated with distinct forms of blood cancers, each exhibiting unique infection mechanisms, pathogenesis, and clinical symptoms. Understanding these connections is crucial for the development of effective prevention and treatment strategies. Healthcare professionals who possess a solid understanding of these associations can offer precise treatments and closely monitor potential complications in individuals with blood cancers and viral infections. By leveraging this information, healthcare providers can optimize patient care and improve outcomes for those affected by both viral infections and hematological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. The Nobel Prize in Physiology or Medicine 1966. https://nobelprizeorg/prizes/medicine/1966/rous/facts/.

  3. Meléndez LV, Hunt RD, Daniel MD, García FG, Fraser CE. Herpesvirus saimiri. II. Experimentally induced malignant lymphoma in primates. Lab Animal Care. 1969;19(3):378–86.

    Google Scholar 

  4. Diamandopoulos GT. Induction of lymphocytic leukemia, lymphosarcoma, reticulum cell sarcoma, and osteogenic sarcoma in the syrian golden hamster by oncogenic DNA simian virus 402. J Natl Cancer Institute. 1973;50(5):1347–65.

    Article  CAS  Google Scholar 

  5. Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virus-associated lymphomas. Phil Trans R Soc London B. 2017. https://doi.org/10.1098/rstb.2016.0271.

    Article  Google Scholar 

  6. Bryan ES, Prasanna T. Human T Cell Lymphotropic Virus. Nihgov. 2022.

  7. Yarchoan R, Uldrick TS. HIV-Associated Cancers and Related Diseases. N Engl J Med. 2018;378(11):1029–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Berhan A, Bayleyegn B, Getaneh Z. HIV/AIDS associated lymphoma: review. Blood Lymphatic Cancer. 2022;12:31–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silling S, Kreuter A, Gambichler T, Meyer T, Stockfleth E, Wieland U. Epidemiology of merkel cell polyomavirus infection and merkel cell carcinoma. Cancers. 2022;14(24):6176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costanzo M, De Giglio MAR, Roviello GN. Deciphering the relationship between SARS-CoV-2 and cancer. Int J Mol Sci. 2023;24(9):7803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. About Epstein-Barr Virus (EBV) | CDC. wwwcdcgov. 2022.

  12. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from burkitt’s lymphoma. The Lancet. 1964;283(7335):702–3.

    Article  Google Scholar 

  13. Womack J, Jimenez M. Common questions about infectious mononucleosis. Am Fam Physician. 2015;91(6):372–6.

    PubMed  Google Scholar 

  14. Grotto I, Mimouni D, Huerta M, Mimouni M, Cohen D, Robin G, et al. Clinical and laboratory presentation of EBV positive infectious mononucleosis in young adults. Epidemiol Infect. 2003;131(1):683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayo C. Mononucleosis - Symptoms and causes. Mayo Clinic. 2018.

  16. Tattevin P, Le Tulzo Y, Minjolle S, Person A, Chapplain JM, Arvieux C, et al. Increasing incidence of severe Epstein-Barr virus-related infectious mononucleosis: surveillance study. J Clin Microbiol. 2006;44(5):1873–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sarwari NM, Khoury JD, Hernandez CMR. Chronic Epstein Barr virus infection leading to classical Hodgkin lymphoma. BMC Hematol. 2016. https://doi.org/10.1186/s12878-016-0059-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Son KH, Shin MY. Clinical features of Epstein-Barr virus-associated infectious mononucleosis in hospitalized Korean children. Korean J Pediatr. 2011;54(10):409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Topp SK, Rosenfeldt V, Vestergaard H, Christiansen CB, Von Linstow M-L. Clinical characteristics and laboratory findings in Danish children hospitalized with primary Epstein-Barr virus infection. Infect Dis. 2015;47(12):908–14.

    Article  Google Scholar 

  20. Medovic R, Igrutinovic Z, Radojevic-Marjanovic R, Markovic S, Raskovic Z, Simovic A, et al. Clinical and laboratory differences between Epstein-Barr and cytomegalovirus infectious mononucleosis in children. Srp Arh Celok Lek. 2016;144(1–2):56–62.

    Article  PubMed  Google Scholar 

  21. Çağlar İ, Topal S, Çokboz M, Düzgöl M, Kara A, Bayram SN, et al. Clinical features and laboratory findings in children hospitalized with acute epstein-barr virus infection: a crosssectional study in a tertiary care hospital. Turk J Pediatr. 2019;61(3):368.

    Article  PubMed  Google Scholar 

  22. Burkitt D. A sarcoma involving the jaws in african children. Br J Surg. 1958;46(197):218–23.

    Article  CAS  PubMed  Google Scholar 

  23. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, et al. Burkitt’s lymphoma. The Lancet. 2012;379(9822):1234–44.

    Article  Google Scholar 

  24. Massini G, Siemer D, Hohaus S. EBV in hodgkin lymphoma. Mediterranean J Hematol Infect Dis. 2009;1(2): e2009013.

    Google Scholar 

  25. Goudarzipour K, Kajiyazdi M, Mahdaviyani A. Epstein-Barr virus-induced hemophagocytic lymphohistiocytosis. Int J Hematol-Oncol Stem Cell Res. 2013;7(1):42–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim W, Montes-Mojarro IA, Fend F, Quintanilla-Martinez L. Epstein-Barr virus-associated T and NK-cell lymphoproliferative diseases. Front Pediatr. 2019. https://doi.org/10.3389/fped.2019.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thida AM, Gohari P. Extranodal NK-Cell Lymphoma. PubMed. 2022.

  28. El Hussein S, Medeiros LJ, Khoury JD. Aggressive NK cell leukemia: current state of the art. Cancers. 2020;12(10):2900.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ng S-B, Chung T-H, Kato S, Nakamura S, Takahashi E, Ko Y-H, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica. 2017;103(2):278–87.

    Article  PubMed  Google Scholar 

  30. Schinzari V, Barnaba V, Piconese S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin Microbiol Infect. 2015;21(11):969–74.

    Article  CAS  PubMed  Google Scholar 

  31. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol. 2018;3(6):383–403.

  32. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis. 2002;2(7):395–403.

    Article  PubMed  Google Scholar 

  33. Wilkins T, Sams R, Carpenter M. Hepatitis B: Screening, prevention, diagnosis, and treatment. Am Fam Physician. 2019;99(5):314–23.

    PubMed  Google Scholar 

  34. Summers J, Mason WS. Replication of the genome of a hepatitis B–like virus by reverse transcription of an RNA intermediate. Cell. 1982;29(2):403–15.

    Article  CAS  PubMed  Google Scholar 

  35. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–86.

    Article  PubMed  Google Scholar 

  36. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–83.

    Article  PubMed  Google Scholar 

  37. Yeo W, Johnson PJ. Diagnosis, prevention and management of hepatitis B virus reactivation during anticancer therapy. Hepatology. 2006;43(2):209–20.

    Article  CAS  PubMed  Google Scholar 

  38. Raimondo G, Allain JP, Brunetto MR, Buendia MA, Chen DS, Colombo M, et al. Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol. 2008;49(4):652–7.

    Article  PubMed  Google Scholar 

  39. Bréchot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology. 2004;127(5 Suppl 1):S56-61.

    Article  PubMed  Google Scholar 

  40. Raimondo G, Caccamo G, Filomia R, Pollicino T. Occult HBV infection. Semin Immunopathol. 2013;35(1):39–52.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi D, Sala L, Minisini R, Fabris C, Falleti E, Cerri M, et al. Occult hepatitis B virus infection of peripheral blood mononuclear cells among treatment-naive patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(4):604–11.

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Xia B, Ning Q, Zhao H, Yang H, Zhao Z, et al. High prevalence of hepatitis B virus infection in patients with aggressive B cell non-Hodgkin’s lymphoma in China. Ann Hematol. 2018;97(3):453–7.

    Article  PubMed  Google Scholar 

  43. Pinato DJ, Rossi D, Minh MT, Toniutto P, Boccato E, Minisini R, et al. Hepatitis B virus and lymphomagenesis: novel insights into an occult relationship. Dig Liver Dis. 2012;44(3):235–8.

    Article  PubMed  Google Scholar 

  44. Mehta P, Reddivari AKR. Hepatitis. PubMed. 2022.

  45. Kedia S, Bhatt VR, Rajan SK, Tandra PK, Behery RAE, Akhtari M. Benign and malignant hematological manifestations of chronic hepatitis C virus infection. Int J Prev Med. 2014;5(Suppl 3):S179.

    PubMed  PubMed Central  Google Scholar 

  46. Cacoub P, Poynard T, Ghillani P, Charlotte F, Olivi M, Charles Piette J, et al. Extrahepatic manifestations of chronic hepatitis C. Arthritis Rheum. 1999;42(10):2204–12.

    Article  CAS  PubMed  Google Scholar 

  47. Tang L, Marcell L, Kottilil S. Systemic manifestations of hepatitis C infection. Infect Agents Cancer. 2016. https://doi.org/10.1186/s13027-016-0076-7.

    Article  Google Scholar 

  48. Lee M-H, Yang H-I, Lu S-N, Jen C-L, You S-L, Wang L-Y, et al. Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: a community-based long-term prospective study. J Infect Dis. 2012;206(4):469–77.

    Article  PubMed  Google Scholar 

  49. Sulkowski MS. Management of the hematologic complications of hepatitis C therapy. Clin Liver Dis. 2005;9(4):601–16.

    Article  PubMed  Google Scholar 

  50. Liu B, Zhang Y, Li J, Zhang W. Hepatitis C virus and risk of extrahepatic malignancies: a case-control study. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-55249-w.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kang J, Cho JH, Suh CW, Lee DH, Oh HB, Sohn YH, et al. High prevalence of hepatitis B and hepatitis C virus infections in Korean patients with hematopoietic malignancies. Ann Hematol. 2010;90(2):159–64.

    Article  PubMed  Google Scholar 

  52. Dal Maso L, Franceschi S. Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol Biomark Prev. 2006;15(11):2078–85.

    Article  Google Scholar 

  53. Rios A. HIV-related hematological malignancies: a concise review. Clin Lymphoma Myeloma Leuk. 2014;14:S96–103.

    Article  PubMed  Google Scholar 

  54. Kieny MP. Structure and regulation of the human AIDS virus. JAIDS J Acquired Immune Deficiency Syndromes. 1990;3(4):395–402.

    CAS  Google Scholar 

  55. Angeletti PC, Zhang L, Wood C. The viral etiology of AIDS-associated malignancies. Adv Pharmacol. 2008;56:509–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moylett EH, Shearer WT. HIV: clinical manifestations. J Allergy Clin Immunol. 2002;110(1):3–16.

    Article  PubMed  Google Scholar 

  57. Coyle TE. Hematologic complications of human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Med Clinics. 1997;81(2):449–70.

    CAS  Google Scholar 

  58. Jacobson DL, McCutchan JA, Spechko PL, Abramson I, Smith RS, Bartok A, et al. The evolution of lymphadenopathy and hypergammaglobulinemia are evidence for early and sustained polyclonal B lymphocyte activation during human immunodeficiency virus infection. J Infect Dis. 1991;163(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  59. Little RF, Dunleavy K. Update on the treatment of HIV-associated hematologic malignancies. Hematology 2013, the American Society of Hematology Education Program Book. 2013;2013(1):382–8.

  60. Kimani SM, Painschab MS, Horner M-J, Muchengeti M, Fedoriw Y, Shiels MS, et al. Epidemiology of haematological malignancies in people living with HIV. The Lancet HIV. 2020;7(9):e641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carbone A, Vaccher E, Gloghini A. Hematologic cancers in individuals infected by HIV. Blood. 2022;139(7):995–1012.

    Article  CAS  PubMed  Google Scholar 

  62. Rosadas C, Taylor GP. HTLV-1 and Co-infections. Front Med. 2022;9: 812016.

    Article  Google Scholar 

  63. Bangham CRM. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood. 2023;141(19):2299–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang L-l, Wei J-y, Wang L, Huang S-l, Chen J-l. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacologica Sinica. 2017;38(8):1093–103.

  65. Human T-lymphotropic virus type 1. wwwwhoint.

  66. Caskey MF, Morgan DJ, Porto AF, Giozza SP, Muniz AL, Orge GO, et al. Clinical manifestations associated with HTLV type I infection: a cross-sectional study. AIDS Res Hum Retroviruses. 2007;23(3):365–71.

    Article  PubMed  Google Scholar 

  67. Ribeiro JF, Nobre AFS, Covre LCF, de Almeida VianaMdNdS, Silva IC, dos Santos LM, et al. Hematological changes in human lymphotropic-T virus type 1 carriers. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.1003047.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yoshie O. CCR4, HTLV-1 infection, and ATL oncogenesis. Uirusu. 2008;58(2):125–40.

    Article  CAS  PubMed  Google Scholar 

  69. Majorovits E, Nejmeddine M, Tanaka Y, Taylor GP, Fuller SD, Bangham CR. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS ONE. 2008;3(5): e2251.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bindhu M, Nair A, Lairmore MD. Role of accessory proteins of HTLV-1 in viral replication, T cell activation, and cellular gene expression. Front Biosci. 2004;9:2556–76.

    Article  PubMed  Google Scholar 

  71. Gross C, Thoma-Kress AK. Molecular mechanisms of HTLV-1 cell-to-cell transmission. Viruses. 2016;8(3):74.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog. 2010;6(2): e1000788.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Giam CZ, Semmes OJ. HTLV-1 infection and adult T-cell leukemia/lymphoma-a tale of two proteins: tax and HBZ. Viruses. 2016;8(6):161.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol. 2012;3:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fuentes-González AM, Contreras-Paredes A, Manzo-Merino J, Lizano M. The modulation of apoptosis by oncogenic viruses. Virol J. 2013;10:182.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saini G, Aneja R. Cancer as a prospective sequela of long COVID-19. BioEssays. 2021;43(6):2000331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018;18(8):471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haznedaroglu I, Malkan U. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. Eur Rev Med Pharmacol Sci. 2016;20(19):4089–111.

    CAS  PubMed  Google Scholar 

  81. Gur I, Giladi A, Isenberg YN, Neuberger A, Stern A. COVID-19 in patients with hematologic malignancies: clinical manifestations, persistence, and immune response. Acta Haematol. 2022;145(3):297–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by all the authors and reviewed and edited by Arian Haghtalab, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arian Haghtalab.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghtalab, A., Hejazi, M., Goharnia, N. et al. Investigating the correlation between prominent viruses and hematological malignancies: a literature review. Med Oncol 41, 102 (2024). https://doi.org/10.1007/s12032-024-02345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02345-1

Keywords

Navigation